
i

Computational Complexity:
A Modern Approach

Sanjeev Arora and Boaz Barak
Princeton University

http://www.cs.princeton.edu/theory/complexity/

complexitybook@gmail.com

Not to be reproduced or distributed without the authors’ permission

ii

Chapter 9

Cryptography

“Human ingenuity cannot concoct a cipher which human ingenuity cannot
resolve.”
E. A. Poe, 1841

“In designing a good cipher ... it is not enough merely to be sure none of
the standard methods of cryptanalysis work– we must be sure that no method
whatever will break the system easily. This, in fact, has been the weakness
of many systems. ... The problem of good cipher design is essentially one of
finding difficult problems, subject to certain other conditions. This is a rather
unusual situation, since one is ordinarily seeking the simple and easily soluble
problems in a field.”
C. Shannon [Sha49b]

“While the NP complete problems show promise for cryptographic use, cur-
rent understanding of their difficulty includes only worst case analysis. For
cryptographic purposes, typical computational costs must be considered.”
W. Diffie and M. Hellman [DH76]

Cryptography is much older than computational complexity. Ever since people began
to write, they invented methods for “secret writing” that would be difficult to decipher
for others. But the numerous methods of encryption or “secret writing” devised over the
years all had one common characteristic— sooner or later they were broken. But everything
changed in 1970’s, when thanks to the works of several researchers, modern cryptography
was born, whereby computational complexity was used to argue about the security of the
encryption schemes. In retrospect this connection seems like a natural one, since the code-
breaker has bounded computational resources (even if she has computers at her disposal)
and therefore to ensure security one should try to ensure that the codebreaking problem is
computationally difficult.

Another notable difference between modern cryptography and the older notion is that the
security of encryption no longer relies upon the the encryption technique being kept secret.
In modern cryptography, the encryption technique itself is well-known, yet nevertheless it is
hard to break. Furthermore, modern cryptography is about much more than just encryption,
and the security of all these schemes is proved by means of reductions similar (though not
identical) to those used in the theory of NP-completeness.

This new focus on building system from basic problems via reductions enabled modern
cryptography to achieve two seemingly contradictory goals. On the one hand these new
schemes are much more secure— systems such as the RSA encryption [RSA78] have withstood
more attacks by talented mathematicians assisted with state of the art computers than every
previous encryption in history. On the other hand, their security requirements are much
more stringent— we require the schemes to remain secure even when the encryption key is
known to the attacker (i.e., public key encryption), and even when the attacker gets access

152 9 Cryptography

to encryptions and decryptions of text of her choice (so-called chosen plaintext and chosen
ciphertext attacks). Moreover, modern cryptography provides schemes that go much beyond
simple encryption— tools such as digital signatures, zero knowledge proofs, electronic voting
and auctions, and more. All of these are shown to be secure against every polynomial-time
attack, and not just attacks we can think of today, as long as the underlying computational
problem is indeed hard.

Research on modern cryptography led to significant insights that had impact and ap-
plications in complexity theory and beyond that. One is the notion of pseudorandomness.
Philosophers and scientists have struggled for years to define when to consider a bit string
“random enough.” Cryptography’s answer to this question is that it suffices if this string
is drawn from a distribution that “looks random” to all efficient (i.e., polynomial-time)
observers (see Section 9.2.3). This notion is crucial for the construction of many crypto-
graphic schemes, but is also extremely useful in other areas where random bits are needed.
For example cryptographic pseudorandom generators can be used to reduce the random-
ness requirements of probabilistic algorithms such as the ones we saw in Chapter 7; see also
Chapter 20. Another insight is the notion of simulation. A natural question in cryptography
is how one can demonstrate that an attacker cannot learn anything about some secret in-
formation from observing the behavior of parties holding this information. Cryptography’s
answer is to show that the attacker’s observations can be simulated without any access to
the secret information. This is epitomized in the notion of zero knowledge proofs covered in
Section 9.4, and used in many other cryptographic applications.

We start the chapter in Section 9.1 with Shannon’s definition of perfectly secret encryp-
tion and the limitations of such systems. These limitations lead us to consider encryptions
that are only computationally secret— secure for polynomial-time eavesdroppers— which
we construct in Section 9.2 using pseudorandom generators. Then, in Section 9.2.3 we
show how these generators can be constructed from weaker assumptions. In Section 9.4
we describe zero knowledge proofs, a fascinating concept that has had deep implications for
cryptography and complexity alike. Finally, in Section 9.5 we mention how these concepts
can be used to achieve security in a variety of settings. Cryptography is a huge topic, and
so naturally this chapter covers only a tiny sliver of it; the chapter notes contain some ex-
cellent choices for further reading. Cryptography is intimately related to notions such as
average-case complexity, hardness amplifications and derandomization, see chapters 18, 19,
and 20.

9.1 Perfect secrecy and its limitations

Secret Message

(plaintext): x {0,1}m

Key: k R {0,1}n

Alice Bob

Ciphertext: y=Ek(x)

Eve

x=Dk(y)

Figure 9.1 In a private key encryption, Alice and Bob share a secret key k chosen at random.
To send a plaintext message x to Bob, Alice sends y = Ek(x) where E(·) is the encryption

function that takes a key k and plaintext x to compute the ciphertext y. Bob can decode x

by running the decryption algorithm D on inputs k, y.

The fundamental task of cryptography is encryption. In this Section we describe this
task at a high level, and discuss what it could possibly mean for encryption to be secure.

9.2 Computational security, one-way functions, and pseudorandom generators 153

We introduce a simple idea for encryption called the one time pad and discuss its strengths
and limitations.

The basic setting is described in Figure 9.1— Alice wants to send a secret message x
(known as the plaintext) to Bob, but her adversary Eve is eavesdropping on the communi-
cation channel between Alice and Bob. Thus Alice will “scramble” the plaintext x using an
encryption algorithm E to obtain a ciphertext y which she sends to Bob. Presumably it will
be hard or even impossible for Eve to decode the plaintext x from the ciphertext y, but Bob
will be able to do so using the decryption algorithm D.

Of course, Bob is seeing the same information that Eve is, so in order to do something
that Eve cannot, Bob has to know something that Eve doesn’t. In the simple setting of
private key encryption we assume that Alice and Bob share some secret string k (known as
the key) that is chosen at random. (Presumably, Alice and Bob met beforehand and agreed
on the key k.)

Thus, the encryption scheme is composed of a pair of algorithms (E, D) each taking a
key and a message (where we write the key input as a subscript), such that for every key k
and plaintext x

Dk(Ek(x)) = x . (1)

The condition (1) says nothing about the security of the scheme, and could be satisfied by
the trivial “encryption” that just outputs the plaintext message. It turns out that defining
security is quite subtle. A first attempt at a definition might be to say that a scheme is
secure if Eve cannot compute x from Ek(x), but this may not be sufficient, because this does
not rule out the possibility of Eve computing some partial information on x. For example,
if Eve knows that the plaintext is either the message “buy” or “sell” then it will be enough
for her to learn only the first character of the message, even if she can’t recover it completely.
Shannon gave the following definition of secure private key encryption that ensures Eve does
not learn anything about the plaintext from the ciphertext:

Definition 9.1 (Perfect Secrecy) Let (E, D) be an encryption scheme for messages of length
m and with a key of length n satisfying (1). We say that (E, D) is perfectly secret if for every
pair of messages x, x′ ∈ {0, 1}m

, the distributions EUn(x) and EUn(x′) are identical.1 ♦

In a perfectly secret encryption, the ciphertext that Eve sees always has the same dis-
tribution, regardless of the plaintext, and so Eve gets absolutely no information on the
plaintext. It might seem like a condition so strong that it’s impossible to satisfy, but in
fact there’s a very simple perfectly secret encryption scheme. In the one-time pad scheme,
to encrypt a message x ∈ {0, 1}n

we choose a random key k ∈
R
{0, 1}n

and encrypt x by
simply sending x⊕k (⊕ denotes bitwise XOR— vector addition modulo 2). The receiver can
recover the message x from y = x⊕ k by XOR’ing y once again with k. It’s not hard to see
that the ciphertext is distributed uniformly regardless of the plaintext message encrypted,
and hence the one-time pad is perfectly secret (see Exercise 9.1).

Of course, as the name suggests, a “one-time pad” must never be reused on another
message. If two messages x, x′ are encoded using the same pad k, this gives Eve both k ⊕ x
and k ⊕ x′, allowing her to compute (k ⊕ x) ⊕ (k ⊕ x′) = x ⊕ x′, which is some nontrivial
information about the messages. In fact, one can show that no perfectly secret encryption
scheme can use a key size shorter than the message size (see Exercise 9.2).

9.2 Computational security, one-way functions, and pseudoran-
dom generators

Though a one-time pad does provide perfect secrecy, it fails utterly as a practical solution
to today’s applications where one wishes to securely exchange megabytes or even gigabytes
of information. Our discussion above implies that perfect secrecy would require private keys

1Recall that Un denotes the uniform distribution over {0, 1}n.

154 9 Cryptography

that are as long as the messages, and it is unclear such huge keys can be securely exchanged
among users. Ideally we want to keep the shared secret key fairly small, say a few hundred
bits long. Obviously, to allow this we must relax the perfect secrecy condition somehow.
As stated in the introduction, the main idea will be to design encryption schemes that are
secure only against eavesdroppers that are efficient (i.e., run in polynomial-time). How-
ever, the next Lemma shows that even with this restriction on the eavesdropper, achieving
perfect secrecy is impossible with small key sizes if P = NP. Hence assuming P 6= NP

will be necessary for proceeding any further. In fact we will rely on assumptions stronger
than P 6= NP —specifically, the assumption that a one-way function exists— and it is
an important research problem to weaken the assumption (ideally to just P 6= NP) under
which cryptographic schemes can be proved secure.

Lemma 9.2 Suppose that P = NP. Let (E, D) be any polynomial-time computable encryp-
tion scheme satisfying (1) with key shorter than the message. Then, there is a polynomial-
time algorithm A satisfying that for every input length m, there is a pair of messages
x0, x1 ∈ {0, 1}m

such that
Pr

b∈
R
{0,1}

k∈
R
{0,1}n

[A(Ek(xb)) = b] ≥ 3/4 , (2)

where n < m denotes the key length for messages of length m. ♦

Such an algorithm breaks the security of the encryption scheme since, as demonstrated
by the “buy”/“sell” example of Section 9.1, a minimal requirement from an encryption
is that Eve cannot tell which one of two random messages was encrypted with probability
much better than 1/2.

Proof of Lemma 9.2: Let (E, D) be an encryption for messages of length m and with
key length n < m as in the lemma’s statement. Let S ⊆ {0, 1}∗ denote the support of
EUn(0m). Note that y ∈ S if and only if y = Ek(0m) for some k, and hence if P = NP then
membership in S can be efficiently verified. Our algorithm A will be very simple— on input
y, it outputs 0 if y ∈ S, and 1 otherwise. We claim that setting x0 = 0m, there exists some
x1 ∈ {0, 1}m

such that (2) holds.
Indeed, for every message x, let Dx denote the distribution EUn(x). By the definition of

A and the fact that x0 = 0m, Pr[A(Dx0) = 0] = 1. Because

Pr
b∈

R
{0,1}

k∈
R
{0,1}n

[A(Ek(xb)) = b] =
1

2
Pr[A(Dx0) = 0]+

1

2
Pr[A(Dx1) = 1]

=
1

2
+

1

2
Pr[A(Dx1) = 1] ,

it suffices to show that there’s some x1 ∈ {0, 1}m
such that Pr[A(Dx1) = 1] ≥ 1/2. In other

words, it suffices to show that Pr[Dx1 ∈ S] ≤ 1/2 for some x1 ∈ {0, 1}m
.

Suppose otherwise that Pr[Dx ∈ S] > 1/2 for every x ∈ {0, 1}m
. Define S(x, k) to be 1 if

Ek(x) ∈ S and to be 0 otherwise, and let T = Ex∈R{0,1}m,k∈{0,1}n [S(x, k)]. Then under our
assumption, T > 1/2. But reversing the order of expectations, we see that

T = E
k∈{0,1}n

[

E
x∈{0,1}m

[S(x, k)]
]

≤ 1/2 ,

where the last inequality follows from the fact that for every fixed key k, the map x 7→ Ek(x)
is one-to-one and hence at most 2n ≤ 2m/2 of the x’s can be mapped under it to a set S of
size ≤ 2n. Thus we obtained a contradiction to the assumption that Pr[Dx ∈ S] > 1/2 for
every x ∈ {0, 1}m. �

Before proceeding further, we make a simple definition that will greatly simplify notation
throughout this chapter.

Definition 9.3 (Negligible functions)
A function ε : N → [0, 1] is called negligible if ε(n) = n−ω(1) (i.e., for every c and sufficiently
large n, ε(n) < n−c).

9.2 Computational security, one-way functions, and pseudorandom generators 155

Because negligible functions tend to zero very fast as their input grows, events that
happen with negligible probability can be safely ignored in most practical and theoretical
settings.

9.2.1 One way functions: definition and some examples

The above discussion suggests that complexity-theoretic conjectures are necessary to prove
the security of encryption schemes. Now we introduce an object that is useful not only in
this context but also many others in cryptography. This is a one-way function: a function
that is easy to compute but hard to invert for a polynomial-time algorithm:

Definition 9.4 (One way functions)
A polynomial-time computable function f : {0, 1}∗ → {0, 1}∗ is a one-way function if for
every probabilistic polynomial-time algorithm A there is a negligible function ε : N → [0, 1]
such that for every n,

Pr
x∈

R
{0,1}n

y=f(x)

[A(y) = x′ s.t. f(x′) = y] < ε(n) .

Conjecture 9.5
There exists a one-way function.

Exercise 9.5 asks you to show that Conjecture 9.5 implies that P 6= NP. Most researchers
believe Conjecture 9.5 is true because there are several examples for functions that no one
has yet been able to invert. Now we describe several.

Multiplication: Simple multiplication turns out to be hard to invert. That is, the function
that treats its input x ∈ {0, 1}n as describing two n/2-bit numbers A and B and
outputs A ·B is believed to be one way. Inverting this function is known as the integer
factorization problem. Of course, it’s easy to factor a number N using at most N (or
even only

√
N) trial divisions. But if N is an n-bit number this is an exponential

in n number of operations. At the moment no polynomial (i.e., polylog(N)) time
algorithm is known for this problem, and the best factoring algorithm runs in time

2O(log1/3 N
√

log log N) [LLMP90].2

A more standard implementation of a one-way function based on factoring is the
following. Treat the input x ∈ {0, 1}n

as randomness that is used to generate two
random n1/3-bit primes P and Q. (We can do so by generating random numbers and
testing their primality using the algorithm described in Chapter 7.) Then output P ·Q.

Factoring integers has captured the attention of mathematicians for at least two mil-
lennia, way before the invention of computers. Yet no efficient factorization algorithm
was found, leading to the conjecture that no such algorithm exists. Then this func-
tion is indeed one-way, though this conjecture is obviously much stronger than the
conjecture that P 6= NP or the conjecture that some one-way function exists.

RSA and Rabin functions: (These examples require a bit of number theory; see Sec-
tion A.3 for a quick review) The RSA function3 is another very popular candidate
for a one-way function. We assume that for every input length n there is an n-bit
composite integer N that was generated in some way, and some number e that is
coprime to ϕ(N) = |Z∗

N | where Z
∗
N is the multiplicative group of numbers coprime

2If A and B are chosen randomly then it’s not hard to find a some prime factor of A ·B, since A ·B will
have a small prime factor with high probability. But finding the all the prime factors or even finding any
representation of A · B as the multiplication of two numbers each no larger than 2n/2 can be shown to be
equivalent (up to polynomial factor) to factoring the product of two random primes.

3RSA are the initials of this function’s discoverers— Rivest, Shamir, and Adleman; see the chapter notes.

156 9 Cryptography

to N . (Typically N would be generated as a product of two n/2-long primes; e is
often set to be simply 3.) The function RSAN,e treats its input as a number X in
Z
∗
N and outputs Xe (mod N).4 It can be shown that because e is coprime to ϕ(N),

this function is one-to-one on Z∗
N . A related candidate one-way function is the Rabin

function that given a number N that is the product of two odd primes P, Q such
that P, Q = 1 (mod 4), maps X ∈ QRN into X2 (mod N), where QRN is the set of
quadratic residues modulo N (an element X ∈ Z

∗
N is a quadratic residue modulo N

if X = W 2 (mod N) for some W ∈ Z
∗
N). Again, it can be shown that this function is

one-to-one on QRN .

While both the RSA function and the Rabin function are believed to be hard to
invert, inverting them is actually easy if one knows the factorization of N . In the
case of the RSA function, the factorization can be used to compute ϕ(N) and from
that the number d such that d = e−1 (mod ϕ(N)). It’s not hard to verify that the
function Y d (mod N) is the inverse of the function Xe (mod N). In the case of the
Rabin function, if we know the factorization then we can use the Chinese Remainder
Theorem to reduce the problem of taking a square root modulo N to taking square
roots modulo the prime factors of N , which can be done in polynomial time. Because
these functions are conjectured hard to invert but become easy to invert once you
know certain information (i.e., N ’s factorization), they are known as trapdoor one-
way functions, and are crucial to obtaining public key cryptography. It it known that
inverting Rabin’s function is in fact computationally equivalent to factoring N (see
Exercise 9.7). No such equivalence is known for the RSA function.

Levin’s universal one-way function: There is a function fU that has a curious property:
if there exists some one-way function f then fU is also a one-way function. For
this reason, the function fU is called a universal one-way function. It is defined as
follows: treat the input as a list x1, . . . , xlog n of n/ log n bit long strings. Output

Mn2

1 (x1), . . . , M
n2

log n(xn) where Mi denotes the ith Turing machine according to some

canonical representation and we define M t(x) to be the output of the Turing machine
M on input x if M uses at most t computational steps on input x. If M uses more
than t computational steps on x then we define M t(x) to be the all-zeroes string 0|x|.
Exercise 9.6 asks you to prove the universality of fU .

There are also examples of candidate one-way functions that have nothing to do with
number theory (e.g., one-way functions arising from block ciphers such as the AES [DR02]).

9.2.2 Encryption from one-way functions

Now we show that one-way functions can be used to to design secure encryption schemes
with keys much shorter than the message length.

Theorem 9.6 (Encryption from one-way function)
Suppose that one-way functions exist. Then for every c ∈ N there exists a computationally
secure encryption scheme (E, D) using n-length keys for nc-length messages.

Of course to make sense of Theorem 9.6, we need to define the term “computationally
secure”. The idea is to follow the intuition that a secure encryption should not reveal any
partial information about the plaintext to a polynomial-time eavesdropper, but due to some
subtleties, the actual definition is somewhat cumbersome. Thus, for the sake of presentation
we’ll use a simpler relaxed definition that an encryption is “computationally secure” if any
individual bit of the plaintext chosen at random cannot be guessed by the eavesdropper

4We can map the input to Z∗
N by simply reducing the input modulo N— the probability (over the choice

of the input) that the result will not be coprime to N is negligible.

9.2 Computational security, one-way functions, and pseudorandom generators 157

with probability non-negligibly higher than 1/2. That is, we say that a scheme (E, D) using
length n keys for length m messages is computationally secure if for every probabilistic
polynomial-time A, there’s a negligible function ε : N → [0, 1] such that

Pr
k∈R{0,1}n

x∈R{0,1}m

[A(Ek(x)) = (i, b) s.t. xi = b] ≤ 1/2 + ε(n) . (3)

The full-fledged, stronger notion of computational security (whose standard name is seman-
tic security) is developed in Exercise 9.9, where it is also shown that Theorem 9.6 holds also
for this stronger notion.

9.2.3 Pseudorandom generators

Recall the one-time pad idea of Section 9.1, whose sole limitation was the need for a shared
random string whose length is the same as the combined length of all the messages that
need to be transmitted. The main idea in the proof of Theorem 9.6 is to show how to take
a small random key of length n and stretch it to a much larger string of length m that
is still “random enough” that it provides security against polynomial-time eavesdroppers
when used as a one-time pad. This stretching of the random string uses a tool called a
pseudorandom generator, which has applications even beyond cryptography.

Example 9.7
What is a random-enough string? Scientists have struggled with this question
before. Here is Kolmogorov’s definition: A string of length n is random if no
Turing machine whose description length is < 0.99n (say) outputs this string
when started on an empty tape. This definition is the “right” definition in some
philosophical and technical sense (which we will not get into here) but is not very
useful in the complexity setting because checking if a string is random according
to this definition is undecidable.
Statisticians have also attempted definitions which boil down to checking if the
string has the “right number” of patterns that one would expect by the laws of
statistics, e.g. the number of times 11100 appears as a substring. (See [Knu73] for
a comprehensive discussion.) It turns out that such definitions are too weak in
the cryptographic setting: one can find a distribution that passes these statistical
tests but still will be completely insecure if used to generate the pad for the one-
time pad encryption scheme.

Cryptography’s answer to the above question is simple and satisfying. First, instead of
trying to describe what it means for a single string to be “random-looking” we focus on
distributions on strings. Second, instead of focusing on individual tester algorithms as the
statisticians did, we say that the distribution has to “look” like the uniformly random dis-
tribution to every polynomial-time algorithm. Such a distribution is called pseudorandom.
The distinguisher algorithm is given a sample string that is drawn from either the uniform
distribution or the unknown distribution. The algorithm outputs “1” or “0” depending
upon whether or not this string looks random to it. (An example of such an algorithm is
the statistics-based tester of Example 9.7.) The distribution is said to be pseudorandom if
the probability that the polynomial-time algorithm outputs 1 is essentially the same on the
two distributions, regardless of which algorithm is used5.

5Note that this definition is reminiscent of a “blind test”: for instance we say that an artificial sweetner
is “sugar-like” if the typical consumer cannot tell the difference between it and sugar in a blind-test. How-
ever, the definition of a pseudorandom distribution is more stringent since the distribution has to fool all

distinguisher algorithms. The analogous notion for a sweetner would require it to taste like sugar to every
human.

158 9 Cryptography

Definition 9.8 (Secure pseudorandom generators)
Let G : {0, 1}∗ → {0, 1}∗ be a polynomial-time computable function. Let ` : N → N be a
polynomial-time computable function such that `(n) > n for every n. We say that G is a
secure pseudorandom generator of stretch `(n), if |G(x)| = `(|x|) for every x ∈ {0, 1}∗ and
for every probabilistic polynomial-time A, there exists a negligible function ε : N → [0, 1]
such that

∣

∣

∣
Pr[A(G(Un)) = 1] − Pr[A(U`(n)) = 1]

∣

∣

∣
< ε(n) ,

for every n ∈ N.

Theorem 9.9 (Pseudorandom generators from one-way functions [HILL99])
If one-way functions exist, then for every c ∈ N, there exists a secure pseudorandom gener-
ator with stretch `(n) = nc.

Definition 9.8 states that it’s infeasible for polynomial-time adversaries to distinguish
between a completely random string of length `(n) and a string that was generated by
applying the generator G to a much shorter random string of length n. Thus, it’s not hard
to verify that Theorem 9.9 implies Theorem 9.6: if we modify the one-time pad encryption
to generate its nc-length random key by applying a secure pseudorandom generator with
stretch nc to a shorter key of length n, then a polynomial-time eavesdropper would not be
able to tell the difference. To see this, assume there is an adversary A that can predict a bit
of the plaintext with probability noticeably larger than 1/2, thus violating the computational
security requirement (3). Then because such prediction is impossible when the key is truly
random (see Exercise 9.3), A can be used to distinguish between a pseudorandom and truly
random key, thus contradicting the security of the generator as per Definition 9.8. �

9.3 Pseudorandom generators from one-way permutations

We will prove only the special case of Theorem 9.9 when the one-way function is a permu-
tation:

Lemma 9.10 Suppose that there exists a one-way function f : {0, 1}∗ → {0, 1}∗ such that
f is one-to-one for every x ∈ {0, 1}∗, |f(x)| = |x|. Then, for every c ∈ N, there exists a
secure pseudorandom generator with stretch nc. ♦

The proof of Lemma 9.10 does demonstrate some of the ideas behind the proof of the
more general Theorem 9.9. Moreover, these ideas, including the hybrid argument and the
Goldreich-Levin Theorem, are of independent interest and had found several applications in
other areas of Computer Science.

9.3.1 Unpredictability implies pseudorandomness

To prove Lemma 9.10 it will be useful to have the following alternative characterization of
pseudorandom generators. Historically, this definition was the original definition proposed
for the notion of pseudorandom generator and the proof that it is equivalent to Definition 9.8
was a major discovery.

Let G : {0, 1}∗ → {0, 1}∗ be a polynomial-time computable function with stretch `(n)
(i.e., |G(x)| = `(|x|) for every x ∈ {0, 1}∗). We call G unpredictable if for every probabilistic
polynomial-time B there is a negligible function ε : N → [0, 1] such that

Pr
x∈

R
{0,1}n

y=G(x)
i∈R [`(n)]

[B(1n, y1, . . . , yi−1) = yi] ≤ 1/2 + ε(n) . (4)

9.3 Pseudorandom generators from one-way permutations 159

In other words, predicting the ith bit given the first i−1 bits (where i is a randomly chosen
index) is difficult for every polynomial-time algorithm.

Clearly, if G is a pseudorandom generator then it is also unpredictable. Indeed, if
y1, . . . , y`(n) were uniformly chosen bits then it would be impossible to predict yi given
y1, . . . , yi−1, and hence if such a predictor exists when y = G(x) for a random x, then
the predictor can distinguish between the distribution U`(n) and G(Un). Interestingly, the
converse direction also holds:

Theorem 9.11 (Unpredictability implies pseudorandomness [Yao82a])
Let ` : N → N be some polynomial-time computable function, and G : {0, 1}∗ → {0, 1}∗ be a
polynomial-time computable function such that |G(x)| = `(|x|) for every x ∈ {0, 1}∗. If G is
unpredictable then it is a secure pseudorandom generator. Moreover, for every probabilistic
polynomial-time algorithm A, there exists a probabilistic polynomial-time B such that for
every n ∈ N and ε > 0, if Pr[A(G(Un)) = 1] − Pr[A(U`(n)) = 1] ≥ ε, then

Pr
x∈

R
{0,1}n

y=G(x)
i∈

R
[`(n)]

[B(1n, y1, . . . , yi−1) = yi] ≥ 1/2 + ε/`(n)

Proof: First, note that the main result does follow from the “moreover” part. Indeed,
suppose that G is not a pseudorandom generator and hence there is some algorithm A and
constant c such that

∣

∣Pr[A(G(Un)) = 1] − Pr[A(U`(n)) = 1]
∣

∣ ≥ n−c (5)

for infinitely many n’s. Then we can ensure (perhaps by changing A to the algorithm
1 − A that flips the one-bit answer of A), that for infinitely many n’s, (5) holds without
the absolute value. For every such n, we’ll get a predictor B that succeeds with probability
1/2 + n−c/`(n), contradicting the unpredictability property.

We turn now to proving this “moreover” part. Let A be some probabilistic polynomial-
time algorithm that is supposedly more likely to output 1 on input from the distribution
G(Un) than on input from U`(n). Our algorithm B will be quite simple: on input 1n,
i ∈ [`(n)] and y1, . . . , yi−1, Algorithm B will choose zi, . . . , x`(n) independently at random,
and compute a = A(y1, . . . , yi−1, zi, . . . , z`(n)). If a = 1 then B surmises its guess for zi is
correct and outputs zi; otherwise it outputs 1 − zi.

Let n ∈ N and ` = `(n) and suppose that Pr[A(G(Un)) = 1] − Pr[A(U`(n)) = 1] ≥ ε.
We’ll show that

Pr
x∈

R
{0,1}n

y=G(x)
i∈

R
[`]

[B(1n, y1, . . . , yi−1) = yi] ≥ 1/2 + ε/` . (6)

To analyze B’s performance, we define the following ` distributions D0, . . . ,D` over {0, 1}`
.

(This technique is called the hybrid argument.) For every i, the distribution Di is obtained
as follows: choose x ∈

R
{0, 1}n

and let y = G(x), output y1, . . . , yi, zi+1, . . . , z`, where
zi+1, . . . , z` are chosen independently at random in {0, 1}. Note that D0 = U` while D` =
G(Un). For every i ∈ {0, .., `}, define pi = Pr[A(Di) = 1]. Note that p` − p0 ≥ ε. Thus,
writing

p` − p0 = (p` − p`−1) + (p`−1 − p`−2) + · · · + (p1 − p0) ,

we get that
∑`

i=1(pi − pi−1) ≥ ε or in other words, Ei∈[`][pi − pi−1] ≥ ε/`. We will prove (6)
by showing that for every i,

Pr
x∈

R
{0,1}n

y=G(x)

[B(1n, y1, . . . , yi−1) = yi] ≥ 1/2 + (pi − pi−1) .

Recall that B makes a guess zi for yi and invokes A to obtain a value a, and then outputs
zi if a = 1 and 1 − zi otherwise. Thus B predicts yi correctly if either a = 1 and yi = zi or

160 9 Cryptography

a 6= 1 and yi = 1 − zi, meaning that the probability this event happens is

1/2 Pr[a = 1|zi = yi] + 1/2(1 − Pr[a = 1|zi = 1 − yi]) . (7)

Yet, one can verify that conditioned on zi = yi, B invokes A with the distribution Di,
meaning that Pr[a = 1|zi = yi] = pi. On the other hand if we don’t condition on zi then
the distribution B invokes A is equal to Di−1. Hence,

pi−1 = Pr[a = 1] =

1/2 Pr[a = 1|zi = yi] + 1/2 Pr[a = 1|zi = 1 − yi] =

1/2pi + 1/2 Pr[a = 1|zi = 1 − yi] .

Plugging this into (7) we get that B predicts yi with probability 1/2 + pi − pi−1. �

9.3.2 Proof of Lemma 9.10: The Goldreich-Levin Theorem

Let f be some one-way permutation. To prove Lemma 9.10 we need to use f to come up
with a pseudorandom generator with arbitrarily large polynomial stretch `(n). It turns out
that the crucial step is obtaining a pseudorandom generator that extends its input by one
bit (i.e., has stretch `(n) = n + 1). This is achieved by the following theorem:

Theorem 9.12 (Goldreich-Levin Theorem [GL89])
Suppose that f : {0, 1}∗ → {0, 1} is a one-way function such that f is one-to-one and
|f(x)| = |x| for every x ∈ {0, 1}∗. Then, for every probabilistic polynomial-time algorithm
A there is a negligible function ε : N → [0, 1] such that

Pr
x,r∈

R
{0,1}n

[A(f(x), r) = x � r] ≤ 1/2 + ε(n) ,

where x � r is defined to be
∑n

i=1 xiri (mod 2).

Theorem 9.12 immediately implies that the function G(x, r) = f(x), r, x � r is a secure
pseudorandom generator that extends its input by one bit (mapping 2n bits into 2n+1 bits).
Indeed, otherwise by Theorem 9.11 there would be a predictor B for this function. But
because f is a permutation over {0, 1}n, the first 2n bits of G(U2n) are completely random
and independent, and hence cannot be predicted from their predecessors with probability
better than 1/2. This means that a predictor for this function would have to succeed at
predicting the 2n+1th bit from the previous 2n bits with probability noticeably larger than
1/2, which exactly amounts to violating Theorem 9.12.

Proof of Theorem 9.12: Suppose, for the sake of contradiction, that there is some
probabilistic polynomial-time algorithm A that violates the theorem’s statement. We’ll use
A to show a probabilistic polynomial-time algorithm B that inverts the permutation f , in
contradiction to the assumption that it is one way. Specifically, we will show that if for
some n,

Pr
x,r∈

R
{0,1}n

[A(f(x), r) = x � r] ≥ 1/2 + ε , (8)

then B will run in O(n2/ε2) time and invert the one-way permutation f on inputs of length
n with probability at least Ω(ε). This means that if A’s success probability is more than
1/2 + n−c for some constant c and infinitely many n’s, then B runs in polynomial-time and
inverts the one-way permutation with probability at least Ω(n−c) for infinitely many n’s.

Let n, ε be such that (8) holds. Then by a simple averaging argument, for at least an
ε/2 fraction of the x’s, the probability over r that A(f(x), r) = x � r is at least 1/2 + ε/2.
We’ll call such x’s good, and show an algorithm B that with high probability inverts f(x)
for every good x.

9.3 Pseudorandom generators from one-way permutations 161

To restate the scenario here (and point out its connection to the program checking idea
introduced in Chapter 8, which came later historically speaking) is that we are given a
“black box” that computes an unknown linear function x 7→ x � r for at least 1/2 + ε/2
fraction of r’s, and we have to give an efficient algorithm that runs in poly(|X |+ 1/ε) time
that reconstructs x.

As a warm-up, note that if Prr[A(f(x), r) = x� r] = 1, then it is easy to recover x from
f(x): just run A(f(x), e1), . . . , A(f(x), en) where ei is the string whose ith coordinate is equal
to one and all the other coordinates are zero. Clearly, x � ei is the ith bit of x, and hence
by making these n calls to A we can recover x completely. Of course, this idea breaks down
if Prr[A(f(x), r) = x � r] is less than 1. Below, we first describe a simpler reconstruction
algorithm that works when this probability is 0.9. The more general algorithm extends this
simpler algorithm.

Recovery for success probability 0.9: Now suppose that for an Ω(ε) fraction of x’s, we
had Prr[A(f(x), r) = x� r] ≥ 0.9. For such an x, we cannot trust that A(f(x), ei) = x� ei,
since it may be that e1, . . . , en are among the 2n/10 strings r on which A answers incorrectly.
Still, there is a simple way to bypass this problem: if we choose r ∈

R
{0, 1}n

then the string
r ⊕ ei is also uniformly distributed. Hence by the union bound,

Pr
r

[A(f(x), r) 6= x � r or A(f(x), r ⊕ ei) 6= x � (r ⊕ ei)] ≤ 0.2 .

But x � (r ⊕ ei) = (x � r) ⊕ (x � ei), which means that if we choose r at random, and
compute z = A(f(x), r) and z′ = A(f(x), r � ei), then z ⊕ z′ will be equal to the ith bit
of x with probability at least 0.8. To obtain every bit of x, we amplify this probability to
1 − 1/(10n) by taking majorities. Specifically, we use the following algorithm:

Algorithm B:

1. Choose r1, . . . , rm independently at random from {0, 1}n
(we’ll specify m

shortly).

2. For every i ∈ [n]:

• Compute the values z1 = A(f(x), r1), z′1 = A(f(x), r1 � ei), . . . , zm =
A(f(x), rm), z′m = A(f(x), rm ⊕ ei).

• Guess that xi is the majority value among {zj ⊕ z′j}j∈[m].

We claim that if m = 200n then for every i ∈ [n], the majority value will be correct with
probability at least 1− 1/(10n) (and hence B will recover every bit of x with probability at
least 0.9). To prove the claim, we define the random variable Zj to be 1 if both A(f(x), rj) =
x � rj and A(f(x), rj ⊕ ei) = x � (rj ⊕ ei); otherwise Zj = 0. Note that the variables
Z1, . . . , Zm are independent and by our previous discussion E[Zj] ≥ 0.8 for every j. It
suffices to show that with probability 1 − 1/(10n), more than m/2 of the Zj ’s are equal to
1. In other words, letting Z = Z1 + . . . Zm, it suffices to show that Pr[Z ≤ m/2] ≤ 1/(10n).
But, since E[Z] =

∑

j E[Zj] ≥ 0.8m, all we need to do is bound Pr [|Z − E[Z]| ≥ 0.3m]. By

Chebychev’s Inequality (Lemma A.12),6

Pr
[

|Z − E[Z]| ≥ k
√

Var(Z)
]

≤ 1/k2 .

In our case, because the Zj’s are independent 0/1 random variables, Var(Z) =
∑m

j=1 Var(Zj)
and Var(Zj) ≤ 1 for every j, implying that

Pr [|Z − E[Z]| ≥ 0.3m] ≤ 1
(0.3

√
m)2

,

which is smaller than 1/(10n) by our choice of m = 200n.

6We could have gotten an even better bound using the Chernoff Inequality, but this analysis is easier to
extend to the general case of lower success probability.

162 9 Cryptography

Recovery for success probability 1/2 + ε/2: The above analysis crucially used the
unrealistic assumption that for many x’s, A(f(x), r) is correct with probability at least 0.9
over r. It’s not hard to see that once this probability falls below 0.75, that analysis breaks
down, since we no longer get any meaningful information by applying the union bound
on the events A(f(x), r) = x � r and A(f(x), r ⊕ ei) = x � (r ⊕ ei). Unfortunately, in
general our only guarantee is that if x is good then this probability is at least 1/2 + ε/2
(which could be much smaller than 0.75). The crucial insight needed to extend the proof
is that all of the above analysis would still carry over even if the strings r1, . . . , rm are
only chosen to be pairwise independent as opposed to fully independent. Indeed, the only
place where we used independence is to argue that the random variables Z1, . . . , Zm satisfy
Var(

∑

j Zj) =
∑

j Var(Zj) and this condition holds also for pairwise independent random
variables (see Claim A.13).

We’ll now show how to pick r1, . . . , rm in a pairwise indpendent fashion in such a way
that we “know” each x � ri already. This may seem ridiculous since x is unknown, and
indeed the catch is that we can do it only thanks to some exhaustive guessing, to be made
clear soon. Set k such that m ≤ 2k − 1 and do as follows:

1. Choose k strings s1, . . . , sk independently at random from {0, 1}n
.

2. For every j ∈ [m], we associate a unique nonempty set Tj ⊆ [k] with j in some
canonical fashion and define rj =

∑

t∈Tj
st (mod 2). That is, rj is the XOR of all the

strings among s1, . . . , sk that belong to the jth set.

It can be shown that the strings r1, . . . , rm are pairwise independent (see Exercise 8.4).
Moreover, for every x ∈ {0, 1}n

, x � rj =
∑

t∈Tj
x � st. This means that if we know the k

values x� s1, . . . , x � sk then we can deduce the m values x � r1, . . . x � rm. This is where
exhaustive guessing comes in. Since 2k = O(m), we can enumerate over all possible guesses
for x � s1, . . . , x � sk in polynomial time. This leads us to the following algorithm B′ to
invert f(·):

Algorithm B′:

Input: y ∈ {0, 1}n
, where y = f(x) for an unknown x.

We assume that x is “good” and hence Prr[A(f(x), r) = x � r] ≥ 1/2 + ε/2.
(We don’t care how B performs on x’s that are not good.)

Operation: Let m = 200n/ε2 and k be the smallest such that m ≤ 2k−1. Choose

s1, . . . , sk independently at random in {0, 1}k
, and define r1, . . . , rm as above.

For every string w ∈ {0, 1}k
do the following:

• Run the algorithm B from above under the assumption that x�st = wt

for every t ∈ [k]. That is, for every i ∈ [n], we compute our guess
zj for x � rj by setting zj =

∑

t∈Tj
wt. We compute the guess z′j for

x � (rj ⊕ ei) as before by setting z′j = A(y, rj ⊕ ei).

• As before, for every i ∈ [n], our guess for xi is the majority value among
{zj ⊕ z′j}j∈[m].

• We test whether our guess for x = x1, . . . , xn satisfies f(x) = y. If so,
we halt and output x.

The analysis is almost identical to the previous case. In one of the 2k iterations we
will guess the correct values w1, . . . , wk for x � s1, . . . , x � sk. We’ll show that in this
particular iteration, for every i ∈ [n] Algorithm B′ guesses xi correctly with probability at
least 1 − 1/(10n). Indeed, fix some i ∈ [n] and define the random variables Z1, . . . , Zm as
we did before: Zj is a 0/1 variable that equals 1 if both zj = x � rj and z′j = x� (rj ⊕ ei).

In the iteration where we chose the right values w1, . . . , wk, it always holds that zj = x� rj

and hence Zj depends only on the second event, which happens with probability at least

9.4 Zero knowledge 163

1/2 + ε/2. Thus, all that is needed is to show that for m = 100n/ε2, if Z1, . . . , Zm are
pairwise independent 0/1 random variables, where E[Zj] ≥ 1/2 + ε/2 for every j, then
Pr[

∑

j Zj ≤ m/2] ≤ 1/(10n). But this follows immediately from Chebychev’s Inequality. �

Getting arbitrarily large expansion

Theorem 9.12 provides us with a secure pseudorandom generator of stretch `(n) = n + 1,
but to complete the proof of Lemma 9.10 (and to obtain useful encryption schemes with
short keys) we need to show a generator with arbitrarily large polynomial stretch. This is
achieved by the following theorem:

Theorem 9.13 If f is a one-way permutation and c ∈ N, then the function G that maps
x, r ∈ {0, 1}n

to r, f `(x)�r, f `−1(x)�r, · · · , f1(x)�r, where ` = nc is a secure pseudorandom
generator of stretch `(2n) = n + nc. (f i denotes the function obtained by applying the
function f i times to the input.) ♦

Proof: By Yao’s theorem (Theorem 9.11), it suffices to show the difficulty of bit-prediction.
For contradiction’s sake, assume there is a PPT machine A such that when x, r ∈ {0, 1}n

and i ∈ {1, . . . , N} are randomly chosen,

Pr[A predicts f i(x) � r given (r, f `(x) � r, fN−1(x) � r, . . . , f i+1(x) � r)] ≥ 1

2
+ ε .

We will show a probabilistic polynomial-time algorithm B that on such n’s will predict x�r
from f(x), r with probability at least 1/2 + ε. Thus, if A has non-negligible success then B
violates Theorem 9.12.

Algorithm B is given r and y such that y = f(x) for some x. It will then pick i ∈
{1, . . . , N} randomly, and compute the values f `−i(y), . . . , f(y) and output a = A(r, f `−i−1(y)�
r, . . . , f(y)� r, y � r). Because f is a permutation, this is exactly the same distribution ob-
tained where we choose x′ ∈

R
{0, 1}n and set x = f i(x′), and hence A will predict f i(x′)� r

with probability 1/2 + ε, meaning that B predicts x � r with the same probability. �

9.4 Zero knowledge

Normally we think of a proof as presenting the evidence that some statement is true, and
hence typically after carefully reading and verifying a proof for some statement, you learn
much more than the mere fact that the statement is true. But does it have to be this way?
For example, suppose that you figured out how to schedule all of the flights of some airline
in a way that saves them millions of dollars. You want to prove to the airline that there
exists such a schedule, without actually revealing the schedule to them (at least not before
you receive your well-deserved payment). Is this possible?

A similar scenario arises in the context of authentication— suppose a company has a
sensitive building, that only a select group of employees is allowed to enter. One way to
enforce this is to choose two random prime numbers P and Q and reveal these numbers to the
selected employees, while revealing N = P ·Q to the guard outside the building. The guard
will be instructed to let inside only a person demonstrating knowledge of N ’s factorization.
But is it possible to demonstrate such knowledge without revealing the factorization?

It turns out this is in fact possible to do, using the notion of zero knowledge proof.
Zero knowledge proofs are interactive probabilistic proof systems, just like the systems
we encountered in Chapter 8. However, in addition to the completeness property (prover
can convince the verifier to accept with high probability) and soundness property (verifier
will reject false statements with high probability), we require an additional zero knowledge
property, that roughly speaking, requires that the verifier does not learn anything from the
interaction apart from the fact that the statement is true. That is, zero knowledge requires
that whatever the verifier learns after participating in a proof for a statement x, she could

164 9 Cryptography

have computed by herself, without participating in any interaction. Below we give the formal
definition for zero knowledge proofs of NP languages. (One can define zero knowledge also
for languages outside NP, but the zero knowledge condition makes it already highly non-
trivial and very useful to obtain such proof systems even for languages in NP.)

Definition 9.14 (Zero knowledge proofs)
Let L be an NP-language, and let p(·), M be a polynomial and Turing machine that demon-
strate this. That is, x ∈ L ⇔ ∃u∈{0,1}p(|x|) s.t. M(x, y) = 1.
A pair P, V of interactive probabilistic polynomial-time algorithms is called a zero knowledge
proof for L, if the following three condition hold:

Completeness: For every x ∈ L and u a certificate for this fact (i.e., M(x, u) = 1),
Pr[outV 〈P (x, u), V (x)〉] ≥ 2/3, where 〈P (x, u), V (x)〉 denotes the interaction of P and
V where P gets x, u as input and V gets x as input, and outV I denotes the output of
V at the end of the interaction I.

Soundness: If x 6∈ L, then for every strategy P ∗ and input u, Pr[outV 〈P ∗(x, u), V (x)〉] ≤
1/3. (The strategy P ∗ needs not run in polynomial time.)

Perfect Zero Knowledge: For every probabilistic polynomial-time interactive strategy
V ∗, there exists an expected probabilistic polynomial-time (stand-alone) algorithm S∗

such that for every x ∈ L and u a certificate for this fact,

outV ∗〈P (x, u), V ∗(x)〉 ≡ S∗(x) . (9)

(That is, these two random variables are identically distributed.) This algorithm S∗

is called the simulator for V ∗, as it simulates the outcome of V ∗’s interaction with the
prover without any access to such an interaction.

The zero knowledge condition means that the verifier cannot learn anything new from
the interaction, even if she does not follow the protocol but rather uses some other strategy
V ∗. The reason is that she could have learned the same thing by just running the stand-
alone algorithm S∗ on the publicly known input x. The perfect zero knowledge condition
can be relaxed by requiring that the distributions in (9) have small statistical distance (see
Section A.2.6) or are computationally indistinguishable (see Exercise 9.17). The resulting
notions are called respectively statistical zero knowledge and computational zero knowledge
and are central to cryptography and complexity theory. The class of languages with statisti-
cal zero knowledge proofs, known as SZK, has some fascinating properties, and is believed
to lie strictly between P and NP (see [Vad99] for an excellent survey). In contrast, it is
known ([GMW86], see also [BCC86]) that if one-way functions exist then every NP language
has a computational zero knowledge proof, and this result has significant applications to the
design of cryptographic protocols (see the chapter notes).

The idea of using simulation to demonstrate security is also central to many aspects of
cryptography. Asides from zero knowledge, it is used in the definition of semantic security
for encryptions (see Exercise 9.9), secure multiparty computation (Section 9.5.4) and many
other settings. In all these cases security is defined as the condition that an attacker cannot
learn or do anything that she could not have done in an idealized and “obviously secure”
setting (e.g., in encryption in the ideal setting the attacker doesn’t see even the ciphertext,
while in zero knowledge in the ideal setting there is no interaction with the prover).

Example 9.15
We show a perfect zero knowledge proof for the language GI of graph isomor-
phism. The language GI is in NP and has a trivial proof satisfying completeness
and soundness— send the isomorphism to the verifier. But that proof is not
known to be zero knowledge, since we do not know of a polynomial-time algo-
rithm that can find the isomorphism between two given isomorphic graphs.

9.5 Some applications 165

Zero-knowledge proof for Graph Isomorphism:

Public input: A pair of graphs G0, G1 on n vertices. (For concreteness, assume
they are represented by their adjacency matrices.)

Prover’s private input: A permutation π : [n] → [n] such that G1 = π(G0),
where π(G) denotes the graph obtained by transforming the vertex i into
π(i) (or equivalently, applying the permutation π to the rows and columns
of G’s adjacency matrix).

Prover’s first message: Prover chooses a random permutation π1 : [n] → [n]
and sends to the verifier the adjacency matrix of π1(G1).

Verifier’s message: Verifier chooses b ∈
R
{0, 1} and sends b to the prover.

Prover’s last message: If b = 1, the prover sends π1 to the verifier. If b = 0,
the prover sends π1 ◦ π (i.e., the permutation mapping n to π1(π(n))) to
the verifier.

Verifier’s check: Letting H denote the graph received in the first message and
π the permutation received in the last message, the verifier accepts if and
only if H = π(Gb).

Clearly, if both the prover and verifier follow the protocol, then the verifier will
accept with probability one. For soundness, we claim that if G0 and G1 are not
isomorphic, then the verifier will reject with probability at least 1/2 (this can be
reduced further by repetition). Indeed, in that case regardless of the prover’s
strategy, the graph H that he sends in his first message cannot be isomorphic to
both G0 and G1, and there has to exist b ∈ {0, 1} such that H is not isomorphic
to Gb. But the verifier will choose this value b with probability 1/2, and then the
prover will not be able to find a permutation π such that H = π(Gb), and hence
the verifier will reject.

Let V ∗ be some verifier strategy. To show the zero knowledge condition, we use
the following simulator S∗: On input a pair of graphs G0, G1, the simulator S∗

chooses b′ ∈
R
{0, 1}, a random permutation π on [n] and computes H = π(Gb′).

It then feeds H to the verifier V ∗ to obtain its message b ∈ {0, 1}. If b = b′ then
S∗ sends π to V ∗ and outputs whatever V ∗ outputs. Otherwise (if b 6= b′) the
simulator S∗ restarts from the beginning.
The crucial observation is that S∗’s first message is distributed in exactly the
same way as the prover’s first message— a random graph that is isomorphic to
G0 and G1. This also means that H reveals nothing about the choice of b′, and
hence the probability that b′ = b is 1/2. If this happens, then the messages H and
π that V ∗ sees are distributed identically to the distribution of messages that it
gets in a real interaction with the prover. Because S∗ succeeds in getting b′ = b
with probability 1/2, the probability it needs k iterations is 2−k, which means that
its expected running time is T (n)

∑∞
k=1 2−k = O(T (n)), where T (n) denotes the

running time of V ∗. Thus, S∗ runs in expected probabilistic polynomial-time.7

9.5 Some applications

Now we give some applications of the ideas introduced in the chapter.

7In Chapter 18 we will see a stricter notion of expected probabilistic polynomial-time (see Definition 18.4).
This simulator satisfies this stricter notion as well.

166 9 Cryptography

9.5.1 Pseudorandom functions

Pseudorandom functions are a natural generalization of pseudorandom generators. This is
a family of functions that although are efficiently computable and have a polynomial-size
representation (and hence are far from being random), are indistinguishable from random
functions to an observer with input/output access to the function. This is of course reminis-
cent of the definition of a pseudorandom generator, whose output also has to pass a “blind
test” versus a truly random string. The difference here is that the object being talked about
is a function, whose truth table has exponential size. Hence the distinguishing algorithm
only has the ability to ask for the value of the function at any inputs of its choosing.

Definition 9.16 Let {fk}k∈{0,1}∗ be a family of functions such that fk : {0, 1}|k| → {0, 1}|k|
for every k ∈ {0, 1}∗, and there is a polynomial-time algorithm that computes fk(x) given

k ∈ {0, 1}∗ , x ∈ {0, 1}|k|. We say that the family is pseudorandom if for every probabilistic
polynomial-time oracle8 Turing machine A there is a negligible function ε : N → [0, 1] such
that

∣

∣

∣

∣

Pr
k∈R{0,1}n

[

Afk(·)(1n) = 1
]

− Pr
g∈RFn

[

Ag(1n) = 1
]

∣

∣

∣

∣

< ε(n)

for every n, where Fn denotes the set of all functions from {0, 1}n to {0, 1}n. ♦

One can verify that if {fk} is a pseudorandom function family, then for every polynomial
`(n), the function G that maps k ∈ {0, 1}n

to fk(1), . . . , fk(`(n)) (where we use some
canonical encoding of the numbers 1, . . . , `(n) as strings in {0, 1}n) is a secure pseudorandom
generator. Thus, pseudorandom functions imply the existence of secure pseudorandom
generators of arbitrary polynomial stretch. It turns out that the converse is true as well:

k

G0(k) G1(k)

y

y0=G0(y) y1=G1(y)

0n
1nx

Gxn...Gx1(k)

u

u0
u1

n

2n

Figure 9.2 The pseudorandom function fk(x) outputs the label of the xth node in a depth
n binary tree where the root is labeled by k, and the children u0, u1 of every node u labeled
y are labeled by G0(y) and G1(y).

Theorem 9.17 ([GGM84]) Suppose that there exists a secure pseudorandom generator G
with stretch `(n) = 2n. Then there exists a pseudorandom function family. ♦

Proof: Let G be a secure pseudorandom generator as in the theorems statement mapping
length-n strings to length-2n strings. For every x ∈ {0, 1}n

, we denote by G0(x) the first n
bits of G(x), and by G1(x) the last n bits of G(x). For every k ∈ {0, 1}n we will define the
function fk(·) as follows:

fk(x) = Gkn(Gkn−1(· · · (Gk1(x)) · · ·) (10)

for every x ∈ {0, 1}n
. Note that fk(x) can be computed by making n invocations of G, and

hence clearly runs in polynomial time. Another way to view fk is given in Figure 9.2—
think of a full depth n binary tree whose root is labeled by k, and where we label the two

8See Section 3.4 for the definition of oracle Turing machines.

9.5 Some applications 167

children of a vertex labeled by y with the values G0(y) and G1(y) respectively. Then, fk(x)
denotes the label of the xth leaf of this tree. Of course, actually writing the tree down would
take exponential time and space, but as is shown by (10), we can compute the label of each
leaf in polynomial time by following the length n path from the root to this leaf.

Why is this function family pseudorandom? We’ll show this by transforming a T -time
algorithm A that distinguishes between fUn and a random function with bias ε into a
poly(n)T -time algorithm B that distinguishes between U2n and G(Un) with bias ε/(nT).

Assume without loss of generality that A makes exactly T queries to its oracle (we can
ensure that by adding superfluous queries). Now, we can implement an oracle O to fUn in
the following way: the oracle O will label vertices of the depth n full binary tree as needed.
Initially, only the root is labeled by a random string k. Whenever, a query of A requires
the oracle to label the children u0, u1 of a vertex v labeled by y, the oracle will invoke G on
y to obtain y0 = G0(y) and y1 = G1(y) and then label u0, u1 with y0, y1 respectively and
delete the label y of u. Note that indeed, once u0 and u1 are labeled, we have no further
need for the label of u. Following the definition of fk, the oracle O answers a query x with
the label of the xth vertex. Note that O invokes the generator G at most Tn times. By
adding superfluous invocations we can assume O invokes the generator exactly Tn times.

Now for every i ∈ {0, . . . , Tn} define the oracle Oi as follows: the oracle Oi follows the
operation of O, but for the first i invocations of G, instead of the labels y0, y1 of the children
of a node labeled y by setting y0 = G0(y) and y1 = G1(y), the oracle Oi chooses both y0

and y1 independently at random from {0, 1}n
. Note that O0 is the same as the oracle O

to fUn , but OnT is an oracle to a completely random function. Let pi = Pr[AOi(1n) = 1].
Then, as in the proof of Theorem 9.11, we may assume pTn − p0 ≥ ε and deduce that
Ei∈

R
[Tn][pi − pi−1] ≥ ε/(Tn). Our algorithm B to distinguish U2n from G(Un) will do as

follows: on input y ∈ {0, 1}2n
, choose i ∈

R
[Tn] and execute A with access to the oracle

Oi−1, using random values for the first i − 1 invocations of G. Then, in the ith invocation
use the value y instead of the result of invoking G. In all the rest of the invocations B runs
G as usual, and at the end outputs what A outputs. One can verify that for every choice of
i, if the input y is distributed as U2n then B’s output is distributed as AOi(1n), while if it
is distributed according to G(Un), B’s output is distributed as AOi−1(1n). �

A pseudorandom function generator is a way to turn a random string k ∈ {0, 1}n
into an

implicit description of an exponentially larger “random looking” string, namely, the table
of all values of the function fk. This has proved a powerful primitive in cryptography.
For example, while we discussed encryption schemes for a single message, in practice we
often want to encrypt many messages with the same key. Pseudorandom functions allow
Alice and Bob to share an “exponentially large one-time pad”. That is, Alice and Bob can
share a key k {0, 1}n of a pseudorandom function, and whenever she wants to encrypt a
message x ∈ {0, 1}n

for Bob, Alice will choose r ∈
R
{0, 1}n

, and send (r, fk(r) ⊕ x). Bob
can find x since he knows the key k, but for an adversary that does not know the key, it
looks as if Alice sent two random strings (as long as she doesn’t choose the same string
r to encrypt two different messages, but this can only happen with exponentially small
probability). Pseudorandom functions are also used for message authentication codes. If
Alice and Bob share a key k of a pseudorandom function, then when Alice sends a message
x to Bob, she can append the value fk(x) to this message. Bob can verify that the pair
(x, y) he receives satisfies y = fk(x). An adversary Eve that controls the communication line
between Alice and Bob cannot change the message x to x′ without being detected, since the
probability that Eve can predict the value of fk(x′) is negligible (after all, a random function
is unpredictable). Furthermore, pseudorandom function generators have also figured in a
very interesting explanation of why current lower bound techniques have been unable to
separate P from NP; see Chapter 23.

9.5.2 Derandomization

The existence of pseudorandom generators implies subexponential deterministic algorithms
for BPP: this is usually referred to as derandomization of BPP. That is, if L ∈ BPP then

168 9 Cryptography

for every ε > 0 there is a 2nε

-time deterministic algorithm A such that for every sampleable
distribution of inputs {Xn} where Xn ∈ {0, 1}n

, Pr[A(Xn) = L(Xn)] > 0.99. (Note that
the randomness is only over the choice of the inputs— the algorithm A is deterministic.)
The algorithm A works by simply reducing the randomness of the probabilistic algorithm
for L to nε using a pseudorandom generator, and then enumerating over all the possible
inputs for the pseudorandom generator. We will see stronger derandomization results for
BPP in Chapter 20.

9.5.3 Tossing coins over the phone and bit commitment

How can two parties A and B toss a fair random coin over the phone? (Many cryptographic
protocols require this basic primitive.) If only one of them actually tosses a coin, there is
nothing to prevent him from lying about the result. The following fix suggests itself: both
players toss a coin and they take the XOR as the shared coin. Even if B does not trust
A to use a fair coin, he knows that as long as his bit is random, the XOR is also random.
Unfortunately, this idea also does not work because the player who reveals his bit first is at
a disadvantage: the other player could just “adjust” his answer to get the desired final coin
toss.

This problem is addressed by the following scheme, which assumes that A and B are
polynomial time Turing machines that cannot invert one-way permutations. First, A chooses
two strings xA and rA of length n and sends a message (fn(xA), rA), where fn is a one-way
permutation. Now B selects a random bit b and sends it to A. Then A reveals xA and they
agree to use the XOR of b and (xA � rA) as their coin toss. Note that B can verify that
xA is the same as in the first message by applying fn, therefore A cannot change her mind
after learning B’s bit. (For this reason, we say that A’s first message is a cryptographic
commitment to the bit xA � rA.) On the other hand, by Theorem 9.12, B cannot predict
xA�rA from A’s first message, and so cannot bias her bit according to the choice of xA�rA.

9.5.4 Secure multiparty computations

This concerns a vast generalization of the setting in Section 9.5.3. There are k parties
and the ith party holds a string xi ∈ {0, 1}n

. They wish to compute f(x1, x2, . . . , xk)

where f :{0, 1}nk → {0, 1} is a polynomial-time computable function known to all of them.
(The setting in Section 9.5.3 is a subcase whereby each xi is a bit —randomly chosen as
it happens—and f is XOR.) Clearly, the parties can just exchange their inputs (suitably
encrypted if need be so that unauthorized eavesdroppers learn nothing) and then each of
them can compute f on his/her own. However, this leads to all of them knowing each
other’s input, which may not be desirable in many situations. For instance, we may wish to
compute statistics (such as the average) on the combination of several medical databases that
are held by different hospitals. Strict privacy and nondisclosure laws may forbid hospitals
from sharing information about individual patients. (The original example Yao gave in
introducing the problem was of k people who wish to compute the average of their salaries
without revealing their salaries to each other.)

We say that a multiparty protocol for computing f is secure if at the end no party learns
anything new apart from the value of f(x1, x2, . . . , xk). The formal definition is inspired
by the definition of zero knowledge and says that whatever a party or a coalition of parties
learn during the protocol can be simulated in an ideal setting where they only get to send
their inputs to some trusted authority that computes f on these inputs and broadcasts the
result. Amazingly, there are protocols to achieve this task securely for every number of
parties and for every polynomial-time computable f— see the chapter notes.9

9Returning to our medical database example, we see that the hospitals can indeed compute statistics
on their combined databases without revealing any information to each other —at least any information
that can be extracted feasibly. It is unclear if current privacy laws allow hospitals to perform such secure
multiparty protocols using patient data— this an example of the law lagging behind scientific progress.

Chapter notes and history 169

9.5.5 Lower bounds for machine learning

In machine learning the goal is to learn a succinct function f : {0, 1}n → {0, 1} from a
sequence of type (x1, f(x1)), (x2, f(x2)), . . . , where the xi’s are randomly-chosen inputs.
Clearly, this is impossible in general since a random function has no succinct description.
But suppose f has a succinct description, e.g. as a small circuit. Can we learn f in that
case?

The existence of pseudorandom functions implies that even though a function may be
polynomial-time computable, there is no way to learn it from examples in polynomial time.
In fact it is possible to extend this impossibility result to more restricted function families
such as NC1 (see Kearns and Valiant [KV89]).

Chapter notes and history

We have chosen to model potential eavesdroppers, and hence also potential inverting algorithms
for the one-way functions as probabilistic polynomial-time Turing machines. An equally justifiable
choice is to model these as polynomial-sized circuits or, equivalently, probabilistic polynomial-time
Turing machines that can have some input-length dependent polynomial-sized constants “hard-
wired” into them as advice. All the results of this chapter hold for this choice as well, and in fact
some proofs and definitions become slightly simpler. We chose to use uniform Turing machines to
avoid making this chapter dependant on Chapter 6.

Goldreich’s book [Gol04] is a good source for much of the material of this chapter (and more
than that), while the undergraduate text [KL07] is a gentler introduction for the basics. For more
coverage of recent topics, especially in applied cryptography, see Boneh and Shoup’s upcoming book
[BS08]. For more on computational number theory, see the books of Shoup [Sho05] and Bach and
Shallit [BS96].

Kahn’s book [Kah96] is an excellent source for the fascinating history of cryptography over
the ages. Up until the mid 20th century, this history followed Edgar Alan Poe’s quote in the
chapter’s start— every cipher designed and widely used was ultimately broken. Shannon [Sha49b]
was the first to rigorously study the security of encryptions. He showed the results presented in
Section 9.1, giving the first formal definition of security and showing that to satisfy it it’s necessary
and sufficient to have the key as large as the message. Shannon realized that computational difficulty
is the way to bypass this bound, though he did not have a concrete approach how to do that. This
is not surprising since the mathematical study of efficient computation (i.e., algorithm design and
complexity theory) only really began in the 1960’s, and with this study came the understanding of
the dichotomy between polynomial time and exponential time.

Around 1974, Diffie and Hellman and independently Merkle began to question the age-old no-
tion that secure communication requires sharing a secret key in advance. This resulted in the
groundbreaking paper of Diffie and Hellman [DH76] that put forward the notion of public key cryp-

tography. This paper also suggested the first implementation of this notion— what is known today
as the Diffie-Hellman key exchange protocol, which also immediately yields a public key encryption
scheme known today as El-Gamal encryption. But, to fully realize their agenda of both confidential
and authenticated communication without sharing secret keys, Diffie and Hellman needed trapdoor

permutations which they conjectured to exist but did not have a concrete implementation for.10

The first construction for such trapdoor permutations was given by Rivest, Shamir, and Adleman
[RSA78]. The resulting encryption and signature schemes were quite efficient and are still the most
widely used such schemes today. Rivest et al conjectured that the security of their trapdoor permu-
tation is equivalent to the factoring problem, though they were not able to prove it (and no proof
has been found in the years since). Rabin [Rab79] later showed a trapdoor permutation that is in
fact equivalent to the factoring problem.

Interestingly, similar developments also took place within the closed world of the intelligence
community and in fact somewhat before the works of [DH76, RSA78], although this only came to
light more than twenty years later [Ell99]. In 1970, James Ellis of the British intelligence agency

10Diffie and Hellman actually used the name “public key encryption” for the concept today known as trap-
door permutations. Indeed, trapdoor permutations can be thought of as a variant of public key encryptions
with a deterministic (i.e., not probabilistic) encryption function. But following the work [GM82], we know
that the use of probabilistic encryption is both essential for strong security, and useful to get encryption
without using trapdoor permutations (as is the case in the Diffie-Hellman / El-Gamal encryption scheme).

170 9 Cryptography

GCHQ also realized that it might be possible to have secure encryption without sharing secret keys.
No one in the agency had found a possible implementation for this idea until in 1973, Clifford Cocks
suggested to use a trapdoor permutation that is a close variant of the RSA trapdoor permutation,
and a few months later Malcolm Williamson discovered what we know today as the Diffie-Hellman
key exchange. (Other concepts such as digital signatures, Rabin’s trapdoor permutations, and
public key encryption from the codes/lattices seem not to have been anticipated in the intelligence
community.) Perhaps it is not very surprising that these developments happened in GCHQ before
their discovery in the open literature, since between Shannon’s work and the publication of [DH76],
cryptography was hardly studied outside of the intelligence community.

Despite the well justified excitement they generated, the security achieved by the RSA and
Diffie-Hellman schemes on their own was not fully satisfactory, and did not match the kind of
security that Shannon showed the one-time pad can achieve in the sense of not revealing even
partial information about the message. Goldwasser and Micali [GM82] showed how such strong
security can be achieved, in a paper that was the basis and inspiration for many of the works that
followed achieving strong notions of security for encryption and other tasks. Another milestone was
reached by Goldwasser, Micali and Rivest [GMR84], who gave strong security definitions for digital
signatures and showed how these can be realized under the assumption that integer factorization
is hard.

Pseudorandom generators were used in practice since the early days of computing. Shamir [Sha81]
was the first to explicitly connect intractability to pseudorandomness, by showing that if the RSA
function is one-way then there exists a generator that can be proven to satisfy a certain weak pseudo-
randomness property (block unpredictability). Blum and Micali [BM82] defined the stronger notion
of next bit unpredictability and showed a factoring-based generator satisfying it. Yao [Yao82a]
defined the even stronger definition of pseudorandomness as fooling all polynomial-time tests (Def-
inition 9.8), and proved that this notion is equivalent to next-bit unpredictability (Theorem 9.11).
The Goldreich-Levin theorem was proven in [GL89], though we presented an unpublished proof due
to Rackoff . Theorem 9.9 (pseudorandom generators from one-way functions) and its very technical
proof is by Hȧstad, Impagliazzo, Luby and Levin [HILL99] (the relevant conference publications are
a decade older). The construction of pseudorandom functions in Section 9.5.1 is due to Goldreich,
Goldwasser, and Micali [GGM84].

Zero knowledge proofs were invented by Goldwasser, Micali and Rackoff [GMR85], who also
showed a zero knowledge proof for problem of quadratic residuosity (see also Example 8.9). Gol-
dreich, Micali and Wigderson [GMW86] showed that if one-way functions exist then there is a
computational zero knowledge proof system for every language in NP. The zero knowledge proto-
col for graph isomorphism of Example 9.15 is also from the same paper. Independently, Brassard,
Chaum and Crépeau [BCC86] gave a perfect zero knowledge argument for NP (where the sound-
ness condition is computational, and the zero knowledge condition is with respect to unbounded
adversaries), under a specific hardness assumption.

Yao [Yao82b] suggested the first protocol for realizing securely any two party functionality, as
described in Section 9.5.4, but his protocol only worked for passive (also known as ”eavesdropping”
or “honest but curious”) adversaries. Goldreich, Micali and Wigderson [GMW87] extended this
result for every number of parties and also showed how to use zero knowledge proofs to achieve
security also against active attacks, a paradigm that has been used many times since.

Some early cryptosystems were designed using the SUBSET SUM problem, but many of those
were broken by the early 1980s. In the last few years, interest in such problems —and also the related
problems of computing approximate solutions to the shortest and nearest lattice vector problems—
has revived, thanks to a one-way function described in Ajtai [Ajt96], and a public-key cryptosystem
described in Ajtai and Dwork [AD97] (and improved on since then by other researchers). These
constructions are secure on most instances if and only if they are secure on worst-case instances.
(The idea used is a variant of random self-reducibility.) Oded Regev’s survey [Reg06] as well as
his lecture notes (available from his home page) are a good source for more information on this
fascinating topic (see also the older book [MG02]). The hope is that such ideas could eventually be
used to base cryptography on worst-case type conjectures such as P 6= NP or NP∩coNP * BPP,
but there are still some significant obstacles to achieving this.

Much research has been devoted to exploring the exact notions of security that one needs for
various cryptographic tasks. For instance, the notion of semantic security (see Section 9.2.2 and
Exercise 9.9) may seem quite strong, but it turns out that for most applications it does not suffice
and we need the stronger notion of chosen ciphertext security [RS91, DDN91]. See the Boneh-Shoup
book [BS08] for more on this topic. Zero knowledge proofs play a central role in achieving security
in such settings.

Exercises 171

Exercises

9.1 Prove that the one-time pad encryption is perfectly secret as per Definition 9.1.

9.2 Prove that if (E, D) is a scheme satisfying (1) with message-size m and key-size n < m, then there
exist two messages x, x′ ∈ {0, 1}m such that EUn(x) is not the same distribution as EUn(x′). H460

9.3 Prove that in the one-time pad encryption, no eavesdropper can guess any bit of the plaintext with
probability better than 1/2. That is, prove that for every function A, if (E, D) denotes the one-time
pad encryption then

Pr
k∈

R
{0,1}n

x∈R{0,1}n

[A(Ek(x)) = (i, b) s.t. xi = b] ≤ 1/2 .

Thus, the one-time pad satisfies in a strong way the condition (3) of computational security.

9.4 Exercise 9.2 and Lemma 9.2 show that for security against unbounded time adversaries (or efficient
time if P = NP) we need key as large as the message. But they actually make an implicit subtle
assumption: that the encryption process is deterministic. In a probabilistic encryption scheme,
the encryption function E may be probabilistic: that is, given a message x and a key k, the value
Ek(x) is not fixed but is distributed according to some distribution Yx,k. Of course, because the
decryption function is only given the key k and not the internal randomness used by E, we modify
the requirement (1) to require Dk(y) = x for every y in the support of Ek(x). Prove that even a
probabilistic encryption scheme cannot have key that’s significantly shorter than the message. That
is, show that for every probabilistic encryption scheme (D, E) using n-length keys and n+10-length

messages, there exist two messages x0, x1 ∈ {0, 1}n+10 and function A such that

Pr
b∈

R
{0,1}

k∈R{0,1}n

[A(Ek(xb)) = b] ≥ 9/10 . (11)

Furthermore, prove that if P = NP then this function A can be dun in polynomial time. H460

9.5 Show that if P = NP then one-way functions do not exist.

9.6 (a) Show that if there exists a one-way function f then there exists a one-way function g that is
computable in n2 time. H460

(b) Show that if there exists a one-way function f then the function fU described in Section 9.2.1
is one way.

9.7 Prove that if there’s a polylog(M) algorithm to invert the Rabin function fM (X) = X2 (mod M)
of Section 9.2.1 on a 1/ polylog(M) fraction of its inputs then we can factor M in polylog(M) time.
H460

9.8 Let {(pn, gn)}n∈N be some sequence of pairs of n-bit numbers such that pn is prime and gn is
a generator of the group Z∗

pn
, and there is a deterministic polynomial-time algorithm such that

S(1n) = (pn, gn) for every n ∈ N.

Suppose A is an algorithm with running time t(n) that on input gx
n (mod pn), manages to find x

for δ(n) fraction of x ∈ {0, .., pn − 1}. Prove that for every ε > 0, there is a randomized algorithm
A′ with running time O(1

δ log 1/ε
(t(n) + poly(n))) such that for every x ∈ {0, .., pn − 1}, Pr[A′(gx

n

(mod pn)) = x] ≥ 1 − ε. This property is known as the self reducibility of the discrete logarithm
problem. H460

9.9 We say that a sequence of random variables {Xn}n∈N where Xn ∈ {0, 1}m(n) for some polynomial
m(·) is sampleable if there’s a probabilistic polynomial-time algorithm D such that Xn is equal
to the distribution D(1n) for every n. Let (E, D) be an encryption scheme such that for every n,
(E, D) uses length n keys to encrypt length m(n) messages for some polynomial m(·). We say that

(E, D) is semantically secure, if for every sampleable sequence {Xn} (where Xn ∈ {0, 1}m(n), every
polynomial-time computable function f : {0, 1}∗ → {0, 1}, and every probabilistic polynomial-time
algorithm A, there exists negligible function ε : N → [0, 1] and a probabilistic polynomial-time
algorithm B such that

Pr
k∈

R
{0,1}n

x∈RXn

[A(Ek(x)) = f(x)] ≤ Pr
x∈

R
Xn

[B(1n) = f(x)] + ε(n) .

That is, A cannot compute f(x) given an encryption of x better than just guessing it using the
knowledge of the distribution Xn.

(a) Prove that if (E, D) is semantically secure then it’s also satisfy the condition of “computational
security” of Section 9.2.2.

(b) Prove that if G is a pseudorandom generator mapping {0, 1}n to {0, 1}m, then the encryption
Ek(x) = x ⊕ G(k), Dk(y) = y ⊕ G(k)is semantically secure. H460

172 9 Cryptography

(c) Prove that semantic security is equivalent to its special case where for every n, Xn is the
uniform distribution over a pair of strings xn

0 , xn
1 and f is the function that maps xn

0 to 0 and
xn

1 to 1 for every n. H460

9.10 Show that if there exists a secure pseudorandom generator with stretch `(n) = n +1 then for every
c there exists a pseudorandom generator with stretch `(n) = nc. H460

9.11 Show that if f is a one-way permutation then so is fk (namely, f(f(f(· · · (f(x))))) where f is
applied k times) where k = nc for some fixed c > 0.

9.12 Assuming one-way functions exist, show that the above fails for one-way functions. That is, design

a one-way function f where fnc

is not one-way for some constant c.

9.13 Suppose x ∈ {0, 1}m is an unknown vector. Let r1, . . . , rm ∈ {0, 1}m be randomly chosen, and x�ri

revealed to us for all i = 1, 2, . . . , m. Describe a deterministic algorithm to reconstruct x from this
information, and show that the probability (over the choice of the ri’s) is at least 1/4 that it
works. This shows that if r1, . . . , rm are fully independent then we cannot guess x� r1, . . . , x� rm

with probability much better than 2−m (and hence it was crucial to move to a merely pairwise
independent collection of vectors in the proof of Theorem 9.12). H460

9.14 Suppose somebody holds an unknown n-bit vector a. Whenever you present a randomly chosen
subset of indices S ⊆ {1, . . . , n}, then with probability at least 1/2 + ε, she tells you the parity of
the all the bits in a indexed by S. Describe a guessing strategy that allows you to guess a (an n
bit string!) with probability at least (ε

n
)c for some constant c > 0.

9.15 Say that two sequences {Xn}, {Yn} of random variables, where Xn, Yn ∈ {0, 1}m(n) for some poly-
nomial m(n), are computationally indistinguishable if for every probabilistic polynomial-time A
there exists a negligible function ε : N → [0, 1] such that

∣

∣Pr[A(Xn) = 1] − Pr[A(Yn) = 1]
∣

∣ < ε(n)

for every n. Prove that:

(a) If f : {0, 1}∗ → {0, 1}∗ is a polynomial-time computable function and {Xn}, {Yn} are compu-
tationally indistinguishable, then so are the sequences {f(Xn)}, {f(Yn)}.

(b) A polynomial-time computable function G with stretch `(n) is a secure pseudorandom gener-
ator if and only if the sequences {U`(n)} and {G(Un)} are computationally indistinguishable.

(c) An encryption scheme (E, D) with `(n)-length messages for n-length keys is semantically se-
cure if and only if for every pair of probabilistic polynomial time algorithms X0, X1, where
|X0(1

n)| = |X1(1
n)| = `(n), the sequences {EUn(X0(1

n))} and {EUn(X1(1
n))} are computa-

tionally indistinguishable.

9.16 Suppose that one-way permutations exist. Prove that there exists a pair of polynomially sampleable
computationally indistinguishable distributions {Gn} and {Hn} over n-vertex graphs such that for
every n, Gn and Hn are n-vertex graphs, and Pr[Gn is 3-colorable] = 1 but Pr[Hn is 3-colorable] =
0. (A graph G is 3-colorable if G’s vertices can be colored in one of three colors so that no two
neighboring vertices have the same color, see Exercise 2.2). H460

9.17 Say that a language L has a computational zero knowledge proof if it satisfies the relaxation of
Definition 9.14 where condition (9) is replaced by the condition that {outv∗〈P (Xn, Un), V ∗(Xn)〉}
and {S∗(Xn)} are computationally indistinguishable for every sampleable distribution (Xn, Un)
such that |Xn| = n and Pr[M(Xn, Un) = 1] = 1,

(a) Prove that if there exists a computational zero knowledge proof for some language L that is
NP-complete via a Levin reduction (Section 2.3.6), then there exists a computational zero
knowledge proof for every L ∈ NP.

(b) Prove that the following protocol (due to Blum [Blu87]) is a computational zero knowledge
proof system with completeness 1 and soundness error 1/2 for the language of Hamiltonian
circuits:11

Common input Graph G on n vertices.

Prover’s private input A Hamiltonian cycle C in the graph.

Prover’s first message Choose a random permutation π on the vertices of G, and let M be
the adjacency matrix of G with its rows and columns permuted according to π. For every
i, j ∈ [n], choose xi,j , ri,j ∈R {0, 1}n and send to the verifier f(xi,j), ri,j , (xi,j�ri,j)⊕Mi,j .

Verifier’s message Verifier chooses b ∈R {0, 1} and sends b to prover.

Prover’s last message If b = 0, the prover sends to the verifier all randomness used in the
first message. That is, the prover reveals the permutation π, the matrix M , and reveals
xi,j for every i, j ∈ [n]. If b = 1, the prover computes C′ which is the permuted version
of the cycle C (i.e., C′ contains (π(i), π(j)) for every edge i j ∈ C). It then sends C′ to
the verifier, and reveals only the randomness corresponding to these edges. That is, for
every (i, j) ∈ C′ it sends xi,j to the verifier.

11The soundness error can be reduced by repetition.

Exercises 173

Verifier’s check If b = 0, the verifier checks that the prover’s information is consistent with
its first message— that M is the permuted adjacency matrix of G according to π, and
that the values xi,j are consistent with Mi,j and the values yi,j that the prover sent in its
first message. If b = 1 then the verifier checks that C′ is indeed a Hamiltonian cycle, and
that the values the prover sent are consistent with its first message and with Mi,j = 1
for every (i, j) ∈ C′. The verifier accepts if and only if these checks succeed.

174 9 Cryptography

