
DRAFT

i

Computational Complexity: A Modern
Approach

Draft of a book: Dated January 2007
Comments welcome!

Sanjeev Arora and Boaz Barak
Princeton University

complexitybook@gmail.com

Not to be reproduced or distributed without the authors’ permission

This is an Internet draft. Some chapters are more finished than others. References and
attributions are very preliminary and we apologize in advance for any omissions (but hope you

will nevertheless point them out to us).

Please send us bugs, typos, missing references or general comments to
complexitybook@gmail.com — Thank You!!



DRAFT

ii



DRAFT

Chapter 11

Decision Trees

A decision tree is a model of computation used to study the number of bits of an input that
need to be examined in order to compute some function on this input. Consider a function f :
{0, 1}n → {0, 1}. A decision tree for f is a tree for which each node is labelled with some xi, and
has two outgoing edges, labelled 0 and 1. Each tree leaf is labelled with an output value 0 or 1.
The computation on input x = x1x2 . . . xn proceeds at each node by inspecting the input bit xi

indicated by the node’s label. If xi = 1 the computation continues in the subtree reached by taking
the 1-edge. The 0-edge is taken if the bit is 0. Thus input x follows a path through the tree. The
output value at the leaf is f(x). An example of a simple decision tree for the majority function is
given in Figure 11.1

Figure unavailable in pdf file.

Figure 11.1: A decision tree for computing the majority function Maj(x1, x2, x3) on three bits. Outputs 1 if at
least two input bits are 1, else outputs 0.

Recall the use of decision trees in the proof of the lower bound for comparison-based sorting
algorithms. That study can be recast in the above framework by thinking of the input —which
consisted of n numbers — as consisting of

(
n
2

)
bits, each giving the outcome of a pairwise comparison

between two numbers.
We can now define two useful decision tree metrics.

Definition 11.1
The cost of tree t on input x, cost(t, x), is the number of bits of x examined by t.

Definition 11.2
The decision tree complexity of function f , D(f), is defined as follows, where T below refers to
the set of decision trees that decide f .

D(f) = min
t∈T

max
x∈{0,1}n

cost(t, x) (1)

The decision tree complexity of a function is the number of bits examined by the most efficient
decision tree on the worst case input to that tree. We are now ready to consider several examples.

Web draft 2007-01-08 22:02
Complexity Theory: A Modern Approach. © 2006 Sanjeev Arora and Boaz Barak. References and attributions are
still incomplete.

p11.1 (207)



DRAFT

p11.2 (208)

Example 11.3
(Graph connectivity) Given a graph G as input, in adjacency matrix form, we would like to know
how many bits of the adjacency matrix a decision tree algorithm might have to inspect in order to
determine whether G is connected. We have the following result.
Theorem 11.4
Let f be a function that computes the connectivity of input graphs with m vertices. Then D(f) =(
m
2

)
.

The idea of the proof of this theorem is to imagine an adversary that constructs a graph, edge by
edge, in response to the queries of a decision tree. For every decision tree that decides connectivity,
the strategy implicitly produces an input graph which requires the decision tree to inspect each of
the

(
m
2

)
possible edges in a graph of m vertices.

Adversary Strategy:
Whenever the decision tree algorithm asks about edge ei,
answer “no” unless this would force the graph to be disconnected.

After i queries, let Ni be the set of edges for which the adversary has replied “no”, Yi the set
of edges for which the adversary has replied “yes”. and Ei the set of edges not yet queried. The
adversary’s strategy maintains the invariant that Yi is a disconnected forest for i <

(
m
2

)
and Yi∪Ei

is connected. This ensures that the decision tree will not know whether the graph is connected
until it queries every edge.

Example 11.5
(OR Function) Let f(x1, x2, . . . xn) =

∨n
i=1 xi. Here we can use an adversary argument to show

that D(f) = n. For any decision tree query of an input bit xi, the adversary responds that xi

equals 0 for the first n− 1 queries. Since f is the OR function, the decision tree will be in suspense
until the value of the nth bit is revealed. Thus D(f) is n.

Example 11.6
Consider the AND-OR function, with n = 2k. We define fk as follows.

fk(x1, . . . , xn) =


fk−1(x1, . . . x2k−1−1) ∧ fk−1(x2k−1 , . . . x2k) if k is even
fk−1(x1, . . . x2k−1−1) ∨ fk−1(x2k−1 , . . . x2k) if k > 1 and is odd
xi if k = 1

(2)

A diagram of a circuit that computes the AND-OR function is shown in Figure 11.2. It is left as
an exercise to prove, using induction, that D(fk) = 2k.

Web draft 2007-01-08 22:02



DRAFT

11.1. CERTIFICATE COMPLEXITY p11.3 (209)

Figure unavailable in pdf file.

Figure 11.2: A circuit showing the computation of the AND-OR function. The circuit has k layers of alternating
gates, where n = 2k.

11.1 Certificate Complexity

We now introduce the notion of certificate complexity, which, in a manner analogous to decision
tree complexity above, tells us the minimum amount of information needed to be convinced of the
value of a function f on input x.

Definition 11.7
Consider a function f : {0, 1}n → {0, 1}. If f(x) = 0, then a 0-certificate for x is a sequence of
bits in x that proves f(x) = 0. If f(x) = 1, then a 1-certificate is a sequence of bits in x that
proves f(x) = 1.

Definition 11.8
The certificate complexity C(f) of f is defined as follows.

C(f) = max
x:input

{number of bits in the smallest 0- or 1- certificate for x} (3)

Example 11.9
If f is a function that decides connectivity of a graph, a 0-certificate for an input must prove that
some cut in the graph has no edges, hence it has to contain all the possible edges of a cut of the
graph. When these edges do not exist, the graph is disconnected. Similarly, a 1-certificate is the
edges of a spanning tree. Thus for those inputs that represent a connected graph, the minimum
size of a 1-certificate is the number of edges in a spanning tree, n − 1. For those that represent a
disconnected graph, a 0 certificate is the set of edges in a cut. The size of a 0-certificate is at most
(n/2)2 = n2/4, and there are graphs (such as the graph consisting of two disjoint cliques of size
n/2) in which no smaller 0-certificate exists. Thus C(f) = n2/4.

Example 11.10
We show that the certificate complexity of the AND-OR function fk of Example 11.6 is 2dk/2e.
Recall that fk is defined using a circuit of k layers. Each layer contains only OR-gates or only
AND-gates, and the layers have alternative gate types. The bottom layer receives the bits of input
x as input and the single top layer gate outputs the answer fk(x). If f(x) = 1, we can construct
a 1-certificate as follows. For every AND-gate in the tree of gates we have to prove that both its
children evaluate to 1, whereas for every OR-gate we only need to prove that some child evaluates
to 1. Thus the 1-certificate is a subtree in which the AND-gates have two children but the OR gates
only have one each. Thus the subtree only needs to involve 2dk/2e input bits. If f(x) = 0, a similar

Web draft 2007-01-08 22:02



DRAFT

p11.4 (210) 11.1. CERTIFICATE COMPLEXITY

argument applies, but the role of OR-gates and AND-gates, and values 1 and 0 are reversed. The
result is that the certificate complexity of fk is 2dk/2e, or about

√
n.

The following is a rough way to think about these concepts in analogy to Turing machine
complexity as we have studied it.

low decision tree complexity ↔ P (4)
low 1-certificate complexity ↔ NP (5)
low 0-certificate complexity ↔ coNP (6)

The following result shows, however, that the analogy may not be exact since in the decision tree
world, P = NP ∩ coNP. It should be noted that the result is tight, for example for the AND-OR
function.

Theorem 11.11
For function f , D(f) ≤ C(f)2.

Proof: Let S0, S1 be the set of minimal 0-certificates and 1-certificates, respectively, for f . Let
k = C(f), so each certificate has at most k bits.

Remark 11.12
Note that every 0-certificate must share a bit position with every 1-certificate, and furthermore,
assign this bit differently. If this were not the case, then it would be possible for both a 0-certificate
and 1-certificate to be asserted at the same time, which is impossible.

The following decision tree algorithm then determines the value of f in at most k2 queries.
Algorithm: Repeat until the value of f is determined: Choose a remaining 0-certificate from S0

and query all the bits in it. If the bits are the values that prove the f to be 0, then stop. Otherwise,
we can prune the set of remaining certificates as follows. Since all 1-certificates must intersect the
chosen 0-certificate, for any c1 ∈ S1, one bit in c1 must have been queried here. Eliminate c1 from
consideration if the certifying value of c1 at at location is different from the actual value found.
Otherwise, we only need to consider the remaining k − 1 bits of c1.

This algorithm can repeat at most k times. For each iteration, the unfixed lengths of the
uneliminated 1-certificates decreases by one. This is because once some values of the input have
been fixed due to queries, for any 0-certificate, it remains true that all 1-certificates must intersect
it in at least one location that has not been fixed, otherwise it would be possible for both a 0-
certificate and a 1-certificate to be asserted. With at most k queries for at most k iterations, a
total of k2 queries is used. �

Web draft 2007-01-08 22:02



DRAFT

11.2. RANDOMIZED DECISION TREES p11.5 (211)

11.2 Randomized Decision Trees

There are two equivalent ways to look at randomized decision trees. We can consider decision trees
in which the branch taken at each node is determined by the query value and by a random coin
flip. We can also consider probability distributions over deterministic decision trees. The analysis
that follows uses the latter model.

We will call P a probability distribution over a set of decision trees T that compute a particular
function. P(t) is then the probability that tree t is chosen from the distribution. For a particular
input x, then, we define c(P, x) =

∑
tinT P(t)cost(t, x). c(P, x) is thus the expected number of

queries a tree chosen from T will make on input x. We can then characterize how well randomized
decision trees can operate on a particular problem.

Definition 11.13
The randomized decision tree complexity, R(f), of f , is defined as follows.

R(f) = min
P

max
x

c(P, x) (7)

The randomized decision tree complexity thus expresses how well the best possible probability
distribution of trees will do against the worst possible input for a particular probability distribution
of trees. We can observe immediately that R(f) ≥ C(f). This is because C(f) is a minimum value
of cost(t, x). Since R(f) is just an expected value for a particular probability distribution of these
cost values, the minimum such value can be no greater than the expected value.

Example 11.14
Consider the majority function, f = Maj(x1, x2, x3). It is straightforward to see that D(f) = 3.
We show that R(f) ≤ 8/3. Let P be a uniform distribution over the (six) ways of ordering the
queries of the three input bits. Now if all three bits are the same, then regardless of the order
chosen, the decision tree will produce the correct answer after two queries. For such x, c(P, x) = 2.
If two of the bits are the same and the third is different, then there is a 1/3 probability that the
chosen decision tree will choose the two similar bits to query first, and thus a 1/3 probability that
the cost will be 2. There thus remains a 2/3 probability that all three bits will need to be inspected.
For such x, then, c(P, x) = 8/3. Therefore, R(f) is at most 8/3.

How can we prove lowerbounds on randomized complexity? For this we need another concept.

11.3 Lowerbounds on Randomized Complexity

needs cleanup now
To prove lowerbounds on randomized complexity, it suffices by Yao’s Lemma (see Section 11.6)

to prove lowerbounds on distributional complexity. Where randomized complexity explores distribu-
tions over the space of decision trees for a problem, distributional complexity considers probability
distributions on inputs. It is under such considerations that we can speak of “average case analysis.”

Web draft 2007-01-08 22:02



DRAFT

p11.6 (212) 11.3. LOWERBOUNDS ON RANDOMIZED COMPLEXITY

Let D be a probability distribution over the space of input strings of length n. Then, if A is
a deterministic algorithm, such as a decision tree, for a function, then we define the distributional
complexity of A on a function f with inputs distributed according to D as the expected cost for
algorithm A to compute f , where the expectation is over the distribution of inputs.

Definition 11.15
The distributional complexity d(A,D) of algorithm A given inputs distributed according to D
is defined as:

d(A,D) =
∑

x:input

D(x)cost(A, x) = Ex∈D[cost(A, x)] (8)

From this we can characterize distributional complexity as a function of a single function f
itself.

Definition 11.16
The distributional decision tree complexity, ∆(f) of function f is defined as:

∆(f) = max
D

min
A

d(A,D) (9)

Where A above runs over the set of decision trees that are deciders for f .

So the distributional decision tree complexity measures the expected efficiency of the most
efficient decision tree algorithm works given the worst case distribution of inputs.

The following theorem follows from Yao’s lemma.

Theorem 11.17
R(f) = ∆(f).

So in order to find a lower bound on some randomized algorithm, it suffices to find a lower
bound on ∆(f). Such a lower bound can be found by postulating an input distribution D and
seeing whether every algorithm has expected cost at least equal to the desired lower bound.

Example 11.18
We return to considering the majority function, and we seek to find a lower bound on ∆(f).
Consider a distribution over inputs such that inputs in which all three bits match, namely 000
and 111, occur with probability 0. All other inputs occur with probability 1/6. For any decision
tree, that is, for any order in which the three bits are examined, there is exactly a 1/3 probability
that the first two bits examined will be the same value, and thus there is a 1/3 probability that
the cost is 2. There is then a 2/3 probability that the cost is 3. Thus the overall expected cost
for this distribution is 8/3. This implies that ∆(f) ≥ 8/3 and in turn that R(f) ≥ 8/3. So
∆(f) = R(f) = 8/3.

Web draft 2007-01-08 22:02



DRAFT

11.4. SOME TECHNIQUES FOR DECISION TREE LOWERBOUNDS p11.7 (213)

11.4 Some techniques for decision tree lowerbounds

Definition 11.19 (Sensitivity)
If f : {0, 1}n → {0, 1} is a function and x ∈ {0, 1}n then the sensitivity of f on x, denoted sx(f),
is the number of bit positions i such that f(x) 6= f(xi), where xi is x with its ith bit flipped. The
sensitivity of f , denoted s(f), is maxx {sx(f)}.

The block sensitivity of f on x, denoted bsx(f), is the maximum number b such that there are
disjoint blocks of bit positions B1,2 , . . . , Bb such that f(x) 6= f(xBi) where xBi is x with all its bits
flipped in block Bi. The block sensitivity of f denoted bs(f) is maxx {bsx(f)}.

It is conjectured that there is a constant c (as low as 2) such that bs(f) = O(s(f)c) for all f but
this is wide open. The following easy observation is left as an exercise.

Lemma 11.20
For any function, s(f) ≤ bs(f) ≤ D(f).

Theorem 11.21 (Nisan)
C(f) ≤ s(f)bs(f).

Proof: For any input x ∈ {0, 1}n we describe a certificate for x of size s(f)bs(f). This certificate
is obtained by considering the largest number of disjoint blocks of variables B1, B2, . . . , Bb that
achieve b = bsx(f) ≤ bs(f). We claim that setting these variables according to x constitutes a
certificate for x.

Suppose not, and let x′ be an input that is consistent with the above certificate. Let Bb+1 be
a block of variables such that x′ = xBb+1 . Then Bb+1 must be disjoint from B1, B2, . . . Bb, which
contradicts b = bsx(f).

Note that each of B1, B2, . . . , Bb has size at most s(f) by definition of s(f), and hence the size
of the certificate we have exhibited is at most s(f)bs(f). �

Recent work on decision tree lowerbounds has used polynomial representations of boolean func-
tions. Recall that a multilinear polynomial is a polynomial whose degree in each variable is 1.

Definition 11.22
An n-variate polynomial p(x1, x2, . . . , xn) represents f : {0, 1}n → {0, 1} if p(x) = f(x) for all
x ∈ {0, 1}n.

The degree of f , denoted deg(f), is the degree of the multilinear polynomial that represents f .

(The exercises ask you to show that the multilinear polynomial representation is unique, so deg(f)
is well-defined.)

Example 11.23
The AND of n variables x1, x2, . . . , xn is represented by the multilinear polynomial

∏n
i=1 xi and

OR is represented by 1−
∏n

i=1(1− xi).

Web draft 2007-01-08 22:02



DRAFT

p11.8 (214) 11.5. COMPARISON TREES AND SORTING LOWERBOUNDS

The degree of AND and OR is n, and so is their decision tree complexity. There is a similar
connection for other problems too, but it is not as tight. The first part of the next theorem is an
easy exercise; the second part is nontrivial.

Theorem 11.24
1. deg(f) ≤ D(f).

2. (Nisan-Smolensky) D(f) ≤ deg(f)2bs(f) ≤ O(deg(f)4).

11.5 Comparison trees and sorting lowerbounds

to be written

11.6 Yao’s MinMax Lemma

This section presents Yao’s minmax lemma, which is used in a variety of settings to prove lower-
bounds on randomized algorithms. Therefore we present it in a very general setting.

Let X be a finite set of inputs and A be a finite set of algorithms that solve some computational
problem on these inputs. For x ∈ X , a ∈ A, we denote by cost(A, x) the cost incurred by algorithm
A on input x. A randomized algorithm is a probability distribution R on A. The cost of R on
input x, denoted cost(R, x), is EA∈R[cost(A, x)]. The randomized complexity of the problem is

min
R

max
x∈X

cost(R, x). (10)

Let D be a distribution on inputs. For any deterministic algorithm A, the cost incurred by it
on D, denoted cost(A,D), is Ex∈D[cost(A, x)]. The distributional complexity of the problem is

max
D

min
A∈A

cost(A,D). (11)

Yao’s Lemma says that these two quantitities are the same. It is easily derived from von Neu-
mann’s minmax theorem for zero-sum games, or with a little more work, from linear programming
duality.

Yao’s lemma is typically used to lowerbound randomized complexity. To do so, one defines
(using some insight and some luck) a suitable distribution D on the inputs. Then one proves that
every deterministic algorithm incurs high cost, say C, on this distribution. By Yao’s Lemma, it
follows that the randomized complexity then is at least C.

Exercises

§1 Suppose f is any function that depends on all its bits; in other words, for each bit position i
there is an input x such that f(x) 6= f(xi). Show that s(f) = Ω(log n).

§2 Consider an f defined as follows. The n-bit input is partitioned into b
√

nc blocks of size
about

√
n. The function is 1 iff there is at least one block in which two consecutive bits are 1

and the remaining bits in the block are 0. Estimate s(f), bs(f), C(f), D(f) for this function.

Web draft 2007-01-08 22:02



DRAFT

11.6. YAO’S MINMAX LEMMA p11.9 (215)

§3 Show that there is a unique multilinear polynomial that represents f :{0, 1}n → {0, 1}. Use
this fact to find the multilinear representation of the PARITY of n variables.

§4 Show that deg(f) ≤ D(f).

Chapter notes and history

The result that the decision tree complexity of connectivity and many other problems is
(
n
2

)
has

motivated the following conjecture (atributed variously to Anderaa, Karp, Yao):
Every monotone graph property has D(·) =

(
n
2

)
.

Here “monotone” means that adding edges to the graph cannot make it go from having the
property to not having the property (e.g., connectivity). “Graph property” means that the property
does not depend upon the vertex indices (e.g., the property that vertex 1 and vertex 2 have an
edge between them). This conjecture is known to be true up to a O(1) factor; the proof uses
topology and is excellently described in Du and Ko [?]. A more ambitious conjecture is that even
the randomized decision tree complexity of monotone graph properties is Ω(n2) but here the best
lowerbound is close to n4/3.

The polynomial method for decision tree lowerbounds is surveyed in Buhrman and de Wolf [?].
The method can be used to lowerbound randomized decision tree complexity (and more recently,
quantum decision tree complexity) but then one needs to consider polynomials that approximately
represent the function.

Web draft 2007-01-08 22:02



DRAFT

p11.10 (216) 11.6. YAO’S MINMAX LEMMA

Web draft 2007-01-08 22:02


	Decision Trees
	Certificate Complexity
	Randomized Decision Trees
	Lowerbounds on Randomized Complexity
	Some techniques for decision tree lowerbounds
	Comparison trees and sorting lowerbounds
	Yao's MinMax Lemma
	Exercises
	Chapter notes and history


