
DRAFT

i

Computational Complexity: A Modern
Approach

Draft of a book: Dated January 2007
Comments welcome!

Sanjeev Arora and Boaz Barak
Princeton University

complexitybook@gmail.com

Not to be reproduced or distributed without the authors’ permission

This is an Internet draft. Some chapters are more finished than others. References and
attributions are very preliminary and we apologize in advance for any omissions (but hope you

will nevertheless point them out to us).

Please send us bugs, typos, missing references or general comments to
complexitybook@gmail.com — Thank You!!

DRAFT

ii

DRAFT

Chapter 3

Diagonalization

“..the relativized P =?NP question has a positive answer for some oracles and a
negative answer for other oracles. We feel that this is further evidence of the difficulty
of the P =?NP question.”
Baker, Gill, Solovay. [?]

One basic goal in complexity theory is to separate interesting complexity classes. To separate
two complexity classes we need to exhibit a machine in one class that gives a different answer
on some input from every machine in the other class. This chapter describes diagonalization,
essentially the only general technique known for constructing such a machine. We have already seen
diagonalization in Section 1.4, where it was used to show the existence of uncomputable functions.
In this chapter, we first use diagonalization to prove hierarchy theorems, according to which giving
Turing machines more computational resources (such as time, space, and non-determinism) allows
them to solve a strictly larger number of problems. We will also use it to show that if P 6= NP
then there exist problems that are neither in P nor NP-complete.

Though diagonalization led to some of these early successes of complexity theory, researchers
realized in the 1970s that diagonalization alone may not resolve P versus NP and other interesting
questions; see Section 3.5. Interestingly, the limits of diagonalization are proved using diagonaliza-
tion.

This last result caused diagonalization to go out of favor for many years. But some recent
results (see Section 16.3 for an example) use diagonalization as a key component. Thus future
complexity theorists should master this simple idea before going on to anything fancier!

Machines as strings and the universal TM. The one common tool used in all diagonalization
proofs is the representation of TMs by strings, such that given a string x a universal TM can
simulate the machine Mx represented by x with a small (i.e. at most logarithmic) overhead, see
Theorems 1.13, ?? and ??. Recall that we assume that every string x represents some machine and
every machine is represented by infinitely many strings. For i ∈ N, we will also use the notation Mi

for the machine represented by the string that is the binary expansion of the number i (ignoring
the leading 1).

Web draft 2007-01-08 22:00
Complexity Theory: A Modern Approach. © 2006 Sanjeev Arora and Boaz Barak. References and attributions are
still incomplete.

p3.1 (63)

DRAFT

p3.2 (64) 3.1. TIME HIERARCHY THEOREM

3.1 Time Hierarchy Theorem

The Time Hierarchy Theorem shows that allowing Turing Machines more computation time strictly
increases the class of languages that they can decide. Recall that a function f :N → N is a time-
constructible function if there is a Turing machine that, given the input 1n, writes down 1f(n) on its
tape in O(f(n)) time. Usual functions like n log n or n2 satisfy this property, and we will restrict
attention to running times that are time-constructible.

Theorem 3.1
If f, g are time-constructible functions satisfying f(n) log f(n) = o(g(n)), then

DTIME(f(n)) (DTIME(g(n)) (1)

Proof: To showcase the essential idea of the proof of Theorem 3.1, we prove the simpler statement
DTIME(n) DTIME(n1.5).

Consider the following Turing Machine D: “On input x, run for |x|1.4 steps the Universal TM
U of Theorem 1.13 to simulate the execution of Mx on x. If Mx outputs an answer in this time,
namely, Mx(x) ∈ {0, 1} then output the opposite answer (i.e., output 1−Mx(x)). Else output 0.”
Here Mx is the machine represented by the string x.

By definition,D halts within n1.4 steps and hence the language L decided byD is in DTIME(n1.5).
We claim that L 6∈ DTIME(n).

For contradiction’s sake assume that some TM M decides L but runs in time cn on inputs of
size n. Then every x ∈ {0, 1}∗, M(x) = D(x).

The time to simulate M by the universal Turing machine U on every input x is at most
c′c|x| log |x| for some constant c′ (depending on the alphabet size and number of tapes and states of
M , but independent of |x|). There exists a number n0 such that for every n ≥ n0, n1.4 > c′cn log n.
Let x be a string representing the machine M of length at least n0 (there exists such a string
since M is represented by infinitely many strings). Then, D(x) will obtain the output M(x) within
|x|1.4 steps, but by definition of D, we have D(x) = 1 −M(x) 6= M(x). Thus we have derived a
contradiction. �

3.2 Space Hierarchy Theorem

The space hierarchy theorem is completely analogous to the time hierarchy theorem. One restricts
attention to space-constructible functions, which are functions f : N → N for which there is a
machine that, given any n-bit input, constructs f(n) in space O(f(n)). The proof of the next
theorem is completely analogous to that of Theorem 3.1. (The theorem does not have the log f(n)
factor because the universal machine for space-bounded computation incurs only a constant factor
overhead in space; see Theorem ??.)

Theorem 3.2
If f, g are space-constructible functions satisfying f(n) = o(g(n)), then

SPACE(f(n)) (SPACE(g(n)) (2)

Web draft 2007-01-08 22:00

DRAFT

3.3. NONDETERMINISTIC TIME HIERARCHY THEOREM p3.3 (65)

3.3 Nondeterministic Time Hierarchy Theorem

The following is the hierarchy theorem for non-deterministic Turing machines.

Theorem 3.3
If f, g are time constructible functions satisfying f(n+ 1) = o(g(n)), then

NTIME(f(n)) NTIME(g(n)) (3)

Proof: Again, we just showcase the main idea by proving NTIME(n) NTIME(n1.5). The
technique from the previous section does not directly apply, since it has to determine the answer of
a TM in order to flip it. To determine the answer of a nondeterminisitic that runs in O(n) time, we
may need to examine as many as 2Ω(n) possible strings of non-deterministic choices. So it is unclear
that how the “diagonalizer” machine can determine in O(n1.5) (or even O(n100)) time how to flip
this answer. Instead we introduce a technique called lazy diagonalization, which is only guaranteed
to flip the answer on some input in a fairly large range.

For every i ∈ N we denote by Mi the non-deterministic TM represented by i’s binary expansion
according to the universal NDTM NU (see Theorem ??). We define the function f : N → N as
follows: f(1) = 2 and f(i+ 1) = 2f(i)1.2 . Note that given n, we can can easily find in O(n1.5) time
the number i such that n is sandwiched between f(i) and f(i+ 1). Our diagonalizing machine D
will try to flip the answer of Mi on some input in the set {1n : f(i) < n ≤ f(i+ 1)}. It is defined
as follows:

“On input x, if x 6∈ 1∗, reject. If x = 1n, then compute i such that f(i) < n ≤ f(i+ 1) and

1. If f(i) < n < f(i + 1) then simulate Mi on input 1n+1 using nondeterminism in n1.1 time
and output its answer. (If the simulation takes more than that then halt and accept.)

2. If n = f(i+ 1), accept 1n iff Mi rejects 1f(i)+1 in (f(i) + 1)1.5 time.”

Note that Part 2 requires going through all possible exp((f(i) + 1)1.1) branches of Mi on input
1f(i)+1, but that is fine since the input size f(i+ 1) is 2f(i)1.2 . We conclude that NDTM D runs in
O(n1.5) time. Let L be the language decided by D. We claim that L 6∈ NTIME(n).

Indeed, suppose for the sake of contradiction that L is decided by an NDTM M running in cn
steps (for some constant c). Since each NDTM is represented by infinitely many strings, we can
find i large enough such that M = Mi and on inputs of length n ≥ f(i), Mi can be simulated in
less than n1.1 steps. Thus the two steps in the description of D ensure respectively that

If f(i) < n < f(i+ 1), then D(1n) = Mi(1n+1) (4)
D(1f(i+1)) 6= Mi(1f(i)+1) (5)

see Figure 3.1.
By our assumption Mi and D agree on all inputs 1n for n ∈ (f(i), f(i+ 1)]. Together with (4),

this implies that D(1f(i+1)) = Mi(1f(i)+1), contradicting(5). �

Web draft 2007-01-08 22:00

DRAFT

p3.4 (66) 3.4. LADNER’S THEOREM: EXISTENCE OF NP-INTERMEDIATE PROBLEMS.

D(1f(i)+1) D(1f(i)+2) D(1f(i+1))

Mi(1
f(i)+1) Mi(1

f(i)+2) Mi(1
f(i+1))

= = = = = = = = =

=

Figure 3.1: The values of D and Mi on inputs 1n for n ∈ (f(i), f(i + 1)]. Full lines denote equality by the design
of D, dashed lines denote equality by the assumption that D(x) = Mi(x) for every x, and the dashed arrow denotes
inequality by the design of D. Note that together all these relations lead to contradiction.

3.4 Ladner’s Theorem: Existence of NP-intermediate problems.

One of the striking aspects of NP-completeness is the surprisingly large number of NP-problems
–including some that were studied for many decades— that turned out to be NP-complete. This
phenomenon suggests a bold conjecture: every problem in NP is either in P or NP complete. We
show that if P 6= NP then this is false —there is a language L ∈ NP \P that is not NP-complete.
(If P = NP then the conjecture is trivially true but uninteresting.) The rest of this section proves
this.

Theorem 3.4 (Ladner’s Theorem [?])
Suppose that P 6= NP. Then there exists a language L ∈ NP \P that is not NP-complete.

Proof: If P 6= NP then we know at least one language in NP \P: namely, the NP-complete lan-
guage SAT. Consider the language SATH of length n satisfiable formulae that are padded with nH(n)

1’s for some polynomial-time computable functionH : N→ N (i.e., SATH =
{
ψ01n

H(n)
: ψ ∈ SAT and n = |ψ|

}
).

Consider two possibilities:

(a) H(n) is at most some constant c for every n. In this case SATH is simply SAT with a polynomial
amount of “padding.” Thus, SATH is also NP-complete and is not in P if P 6= NP.

(b) H(n) tends to infinity with n, and thus the padding is of superpolynomial size. In this case,
we claim that SATH cannot be NP-complete. Indeed, if there is a O(ni)-time reduction
f from SAT to SATH then such a reduction reduces the satisfiability of SAT instances of
length n to instances of SATH of length O(ni), which must have the form ψ01|ψ|H(|ψ|)

, where
|ψ| + |ψ|H(|ψ|) = O(ni), and hence |ψ| = o(n). In other words, we have a polynomial-time
reduction from SAT instances of length n to SAT instances of length o(n), which implies SAT
can be solved in polynomial time. (The algorithm consists of applying the reduction again
and again, reducing the size of the instances each time until the instance is of size O(1) and
can be solved in O(1) time by brute force) This is a contradiction to the assumption P 6= NP.

Web draft 2007-01-08 22:00

DRAFT

3.4. LADNER’S THEOREM: EXISTENCE OF NP-INTERMEDIATE PROBLEMS. p3.5 (67)

The proof of the Theorem uses a language SATH for a function H that in some senses combines
the two cases above. This function tends to infinity with n, so that SATH is not NP-complete as
in Case (b), but grows slowly enough to assure SATH 6∈ P as in Case (a). Function H is defined as
follows:

H(n) is the smallest number i < log log n such that for every x ∈ {0, 1}∗ with |x| ≤ log n,

Mi halts on x within i|x|i steps and Mi outputs 1 iff x ∈ SATH

where Mi is the machine represented by the binary expansion of i according to the
representation scheme of the universal Turing machine U of Theorem 1.13. If there is
no such i then we let H(n) = log log n.

Notice, this is implicitly a recursive definition since the definition of H depends on SATH , but
a moment’s thought shows that H is well-defined since H(n) determines membership in SATH of
strings whose length is greater than n, and the definition of H(n) only relies upon checking the
status of strings of length at most log n.

There is a trivial algorithm to compute H(n) in O(n3) time. After all, we only need to (1)
compute H(k) for every k ≤ log n, (2) simulate at most log log n machines for every input of length
at most log n for log log n(log n)log logn = o(n) steps, and (3) compute SAT on all the inputs of
length at most log n.

Now we have the following two claims.

claim 1: SATH is not in P. Suppose, for the sake of contradiction, that there is a machine M
solving SATH in at most cnc steps. Since M is represented by infinitely many strings, there is
a number i > c such that M = Mi. By the definition of H(n) this implies that for n > 22i ,
H(n) ≤ i. But this means that for all sufficiently large input lengths, SATH is simply the language
SAT padded with a polynomial (i.e., ni) number of 1’s, and so cannot be in P unless P = NP.
claim 2: SATH is not NP-complete. As in Case (b), it suffices to show that H(n) tends to infinity
with n. We prove the equivalent statement that for every integer i, there are only finitely many
n’s such that H(n) = i: since SATH 6∈ P, for each i we know that there is an input x such that
given i|x|i time, Mi gives the incorrect answer to whether or not x ∈ SATH . Then the definition of
H ensures that for every n > 2|x|, H(x) 6= i.

�

Remark 3.5
We do not know of a natural decision problem that, assuming NP 6= P, is proven to be in NP \P
but not NP-complete, and there are remarkably few candidates for such languages. However,
there are a few fascinating examples for languages not known to be either in P nor NP-complete.
Two such examples are the Factoring and Graph isomorphism languages (see Example 2.2). No
polynomial-time algorithm is currently known for these languages, and there is some evidence that
they are not NP complete (see Chapter 8).

Web draft 2007-01-08 22:00

DRAFT

p3.6 (68) 3.5. ORACLE MACHINES AND THE LIMITS OF DIAGONALIZATION?

3.5 Oracle machines and the limits of diagonalization?

Quantifying the limits of “diagonalization” is not easy. Certainly, the diagonalization in Sections 3.3
and 3.4 seems more clever than the one in Section 3.1 or the one that proves the undecidability of
the halting problem.

For concreteness, let us say that “diagonalization” is any technique that relies upon the following
properties of Turing machines:

I The existence of an effective representation of Turing machines by strings.

II The ability of one TM to simulate any another without much overhead in running time or space.

Any argument that only uses these facts is treating machines as blackboxes: the machine’s
internal workings do not matter. We now show a general way to define a variant of Turing Machines
called oracle Turing Machines that still satisfy the above two properties. However, one way of
defining the variants results in TMs for which P = NP, whereas the other way results in TMs for
which P 6= NP. We conclude that to resolve P versus NP we need to use some other property
besides the above two.

Oracle machines will be used elsewhere in this book in other contexts. These are machines that
are given access to an “oracle” that can magically solve the decision problem for some language
O ⊆ {0, 1}∗. The machine has a special oracle tape on which it can write a string q ∈ {0, 1}∗ on a
and in one step gets an answer to a query of the form “Is q in O?”. This can be repeated arbitrarily
often with different queries. If O is a difficult language that cannot be decided in polynomial time
then this oracle gives an added power to the TM.

Definition 3.6 (Oracle Turing Machines)
An oracle Turing machine is a TM M that has a special read/write tape we call M ’s oracle tape and
three special states qquery, qyes, qno. To execute M , we specify in addition to the input a language
O ⊆ {0, 1}∗ that is used as the oracle for M . Whenever during the execution M enters the state
qquery, the machine moves into the state qyes if q ∈ O and qno if q 6∈ O, where q denotes the contents
of the special oracle tape. Note that, regardless of the choice of O, a membership query to O
counts only as a single computational step. If M is an oracle machine, O ⊆ {0, 1}∗ a language, and
x ∈ {0, 1}∗, then we denote the output of M on input x and with oracle O by MO(x).

Nondeterministic oracle TMs are defined similarly.

Definition 3.7
For every O ⊆ {0, 1}∗, PO is the set of languages decided by a polynomial-time deterministic
TM with oracle access to O and NPO is the set of languages decided by a polynomial-time non-
deterministic TM with oracle access to O.

To illustrate these definitions we show a few simple claims.

Claim 3.8
1. Let SAT denote the language of unsatisfiable formulae. Then SAT ∈ PSAT.

2. Let O ∈ P. Then PO = P.

Web draft 2007-01-08 22:00

DRAFT

3.5. ORACLE MACHINES AND THE LIMITS OF DIAGONALIZATION? p3.7 (69)

3. Let EXPCOM be the following language

{〈M,x, 1n〉 : M outputs 1 on x within 2n steps} .

Then PEXPCOM = NPEXPCOM = EXP. (Recall that EXP = ∪cDTIME(2n
c
).)

Proof:

1. Given oracle access to SAT, to decide whether a formula ϕ is in SAT, the machine asks the
oracle if ϕ ∈ SAT, and then gives the opposite answer as its output.

2. Allowing an oracle can only help compute more languages and so P ⊆ PO. If O ∈ P then
it is redundant as an oracle, since we can transform any polynomial-time oracle TM using O
into a standard (no oracle) by simply replacing each oracle call with the computation of O.
Thus PO ⊆ P.

3. Clearly, an oracle to EXPCOM allows one to perform an exponential-time computation at the
cost of one call, and so EXP ⊆ PEXPCOM. On the other hand, if M is a non-deterministic
polynomial-time oracle TM, we can simulate its execution with a EXPCOM oracle in expo-
nential time: such time suffices both to enumerate all of M ’s non-deterministic choices and
to answer the EXPCOM oracle queries. Thus, EXP ⊆ PEXPCOM ⊆ NPEXPCOM ⊆ EXP.

�

The key fact to note about oracle TMs is the following: Regardless of what oracle O is, the set
of all oracle TM’s with access to oracle O satisfy Properties I and II above. The reason is that we
can represent TMs with oracle O as strings, and we have a universal TM OU that, using access
to O, can simulate every such machine with logarithmic overhead, just as Theorem 1.13 shows for
non-oracle machines. Indeed, we can prove this in exactly the same way of Theorem 1.13, except
that whenever in the simulation M makes an oracle query, OU forwards the query to its own oracle.

Thus any result about TMs or complexity classes that uses only Properties I and II above also
holds for the set of all TMs with oracle O. Such results are called relativizing results.

All of the results on universal Turing machines and the diagonalizations results in this chapter
are of this type.

The next theorem implies that whichever of P = NP or P 6= NP is true, it cannot be a
relativizing result.

Theorem 3.9 (Baker, Gill, Solovay [?])
There exist oracles A,B such that PA = NPA and PB 6= NPB.

Proof: As seen in Claim 3.8, we can use A = EXPCOM. Now we construct B. For any language
B, let UB be the unary language

UB = {1n : some string of length n is in B} .

For every oracle B, the language UB is clearly in NPB, since a non-deterministic TM can make a
non-deterministic guess for the string x ∈ {0, 1}n such that x ∈ B. Below we construct an oracle
B such that UB 6∈ PB, implying that PB 6= NPB.

Web draft 2007-01-08 22:00

DRAFT

p3.8 (70) 3.5. ORACLE MACHINES AND THE LIMITS OF DIAGONALIZATION?

Construction of B: For every i, we let Mi be the oracle TM represented by the binary expansion
of i. We construct B in stages, where stage i ensures that MB

i does not decide UB in 2n/10 time.
Initially we let B be empty, and gradually add strings to it. Each stage determines the status (i.e.,
whether or not they will ultimately be in B) of a finite number of strings.

Stage i: So far, we have declared for a finite number of strings whether or not they are in B.
Choose n large enough so that it exceeds the length of any such string, and run Mi on input 1n

for 2n/10 steps. Whenever it queries the oracle about strings whose status has been determined,
we answer consistently. When it queries strings whose status is undetermined, we declare that the
string is not in B. Note that until this point, we have not declared that B has any string of length
n. Now we make sure that if Mi halts within 2n/10 steps then its answer on 1n is incorrect. If Mi

accepts, we declare that all strings of length n are not in B, thus ensuring 1n 6∈ Bu. If Mi rejects,
we pick a string of length n that it has not queried (such a string exists because Mi made at most
2n/10 queries) and declare that it is in B, thus ensuring 1n ∈ Bu. In either case, the answer of Mi

is incorrect. Our construction ensures that UB is not in PB (and in fact not in DTIMEB(f(n))
for every f(n) = o(2n)). �

Let us now answer our original question: Can diagonalization or any simulation method resolve
P vs NP? Answer: Possibly, but it has to use some fact about TMs that does not hold in presence
of oracles. Such facts are termed nonrelativizing and we will later see examples of such facts.
However, a simple one was already encountered in Chapter ??: the Cook-Levin theorem! It is not
true for a general oracle A that every language L ∈ NPA is polynomial-time reducible to 3SAT
(see Exercise 6). Note however that nonrelativizing facts are necessary, not sufficient. It is an
open question how to use known nonrelativizing facts in resolving P vs NP (and many interesting
complexity theoretic conjectures).

Whenever we prove a complexity-theoretic fact, it is useful to check whether or not it can be
proved using relativizing techniques. The reader should check that Savitch’s theorem (Corollary ??)
and Theorem 4.18 do relativize.

Later in the book we see other attempts to separate complexity classes, and we will also try to
quantify —using complexity theory itself!—why they do not work for the P versus NP question.

What have we learned?

• Diagonalization uses the representation of Turing machines as strings to sep-
arate complexity classes.

• We can use it to show that giving a TM more of the same type of resource
(time, non-determinism, space) allows it to solve more problems, and to show
that, assuming NP 6= P, NP has problems neither in P nor NP-complete.

• Results proven solely using diagonalization relativize in the sense that they
hold also for TM’s with oracle access to O, for every oracle O ⊆ {0, 1}∗. We
can use this to show the limitations of such methods. In particular, relativizing
methods alone cannot resolve the P vs. NP question.

Web draft 2007-01-08 22:00

DRAFT

3.5. ORACLE MACHINES AND THE LIMITS OF DIAGONALIZATION? p3.9 (71)

Chapter notes and history

Georg Cantor invented diagonalization in the 19th century to show that the set of real numbers
is uncountable. Kurt Gödel used a similar technique in his proof of the Incompleteness Theo-
rem. Computer science undergraduates often encounter diagonalization when they are taught the
undecidabilty of the Halting Problem.

The time hierarchy theorem is from Hartmanis and Stearns’ pioneering paper [?]. The space
hierarchy theorem is from Stearns, Hartmanis, and Lewis [?]. The nondeterministic time hierarchy
theorem is from Cook [?], though the simple proof given here is essentially from [?]. A similar
proof works for other complexity classes such as the (levels of the) polynomial hierarchy discussed
in the next chapter. Ladner’s theorem is from [?] but the proof here is due to an unpublished
manuscript by Impagliazzo. The notion of relativizations of the P versus NP question is from Baker,
Gill, and Solovay [?], though the authors of that paper note that other researchers independently
discovered some of their ideas. The notion of relativization is related to similar ideas in logic (such
as independence results) and recursive function theory.

The notion of oracle Turing machines can be used to study interrelationships of complexity
classes. In fact, Cook [?] defined NP-completeness using oracle machines. A subfield of complexity
theory called structural complexity has carried out a detailed study of oracle machines and classes
defined using them; see [].

Whether or not the Cook-Levin theorem is a nonrelativizing fact depends upon how you for-
malize the question. There is a way to allow the 3SAT instance to “query” the oracle, and then the
Cook-Levin theorem does relativize. However, it seems safe to say that any result that uses the
locality of computation is looking at the internal workings of the machine and hence is potentially
nonrelativizing.

The term superiority introduced in the exercises does not appear in the literature but the
concept does. In particular, ??? have shown the limitations of relativizing techniques in resolving
certain similar open questions.

Exercises

§1 Show that the following language is undecidable:{
xMy : M is a machine that runs in 100n2 + 200 time

}
.

§2 Show that SPACE(n) 6= NP. (Note that we do not know if either class is contained in the
other.)

§3 Show that there is a language B ∈ EXP such that NPB 6= PB.

§4 Say that a class C1 is superior to a class C2 if there is a machine M1 in class C1 such that for
every machine M2 in class C2 and every large enough n, there is an input of size between n
and n2 on which M1 and M2 answer differently.

(a) Is DTIME(n1.1) superior to DTIME(n)?

Web draft 2007-01-08 22:00

DRAFT

p3.10 (72) 3.5. ORACLE MACHINES AND THE LIMITS OF DIAGONALIZATION?

(b) Is NTIME(n1.1) superior to NTIME(n)?

§5 Show that there exists a function that is not time-constructible.

§6 Show that there is an oracle A and a language L ∈ NPA such that L is not polynomial-time
reducible to 3SAT even when the machine computing the reduction is allowed access to A.

§7 Suppose we pick a random language B, by deciding for each string independently and with
probability 1/2 whether or not it is in B. Show that with high probability PB 6= NPB. (To
give an answer that is formally correct you may need to know elementary measure theory.)

Web draft 2007-01-08 22:00

	Diagonalization
	Time Hierarchy Theorem
	Space Hierarchy Theorem
	Nondeterministic Time Hierarchy Theorem
	Ladner's Theorem: Existence of NP-intermediate problems.
	Oracle machines and the limits of diagonalization?
	Chapter notes and history
	Exercises

