
DRAFT

i

Computational Complexity: A Modern
Approach

Draft of a book: Dated January 2007
Comments welcome!

Sanjeev Arora and Boaz Barak
Princeton University

complexitybook@gmail.com

Not to be reproduced or distributed without the authors’ permission

This is an Internet draft. Some chapters are more finished than others. References and
attributions are very preliminary and we apologize in advance for any omissions (but hope you

will nevertheless point them out to us).

Please send us bugs, typos, missing references or general comments to
complexitybook@gmail.com — Thank You!!



DRAFT

ii



DRAFT

Introduction

“As long as a branch of science offers an abundance of problems, so long it is alive;
a lack of problems foreshadows extinction or the cessation of independent develop-
ment.”
David Hilbert, 1900

“The subject of my talk is perhaps most directly indicated by simply asking two ques-
tions: first, is it harder to multiply than to add? and second, why?...I (would like
to) show that there is no algorithm for multiplication computationally as simple as
that for addition, and this proves something of a stumbling block.”
Alan Cobham, 1964 [?]

The notion of computation has existed in some form for thousands of years. In its everyday
meaning, this term refers to the process of producing an output from a set of inputs in a finite
number of steps. Here are three examples for computational tasks:

• Given two integer numbers, compute their product.

• Given a set of n linear equations over n variables, find a solution if it exists.

• Given a list of acquaintances and a list of containing all pairs of individuals who are not
on speaking terms with each other, find the largest set of acquaintances you can invite to a
dinner party such that you do not invite any two who are not on speaking terms.

In the first half of the 20th century, the notion of “computation” was made much more precise
than the hitherto informal notion of “a person writing numbers on a note pad following certain
rules.” Many different models of computation were discovered —Turing machines, lambda calculus,
cellular automata, pointer machines, bouncing billiards balls, Conway’s Game of life, etc.— and
found to be equivalent. More importantly, they are all universal, which means that each is capable
of implementing all computations that we can conceive of on any other model (see Chapter 1). The
notion of universality motivated the invention of the standard electronic computer, which is capable
of executing all possible programs. The computer’s rapid adoption in society in the subsequent
half decade brought computation into every aspect of modern life, and made computational issues
important in design, planning, engineering, scientific discovery, and many other human endeavors.

However, computation is not just a practical tool, but also a major scientific concept. General-
izing from models such as cellular automata, scientists have come to view many natural phenomena

Web draft 2007-01-08 21:59
Complexity Theory: A Modern Approach. © 2006 Sanjeev Arora and Boaz Barak. References and attributions are
still incomplete.

p0.1 (1)



DRAFT

p0.2 (2)

as akin to computational processes. The understanding of reproduction in living things was trig-
gered by the discovery of self-reproduction in computational machines. (In fact, a famous article
by Pauli predicted the existence of a DNA-like substance in cells almost a decade before Watson
and Crick discovered it.) Today, computational models underlie many research areas in biology
and neuroscience. Several physics theories such as QED give a description of nature that is very
reminiscent of computation, motivating some scientists to even suggest that the entire universe
may be viewed as a giant computer (see Lloyd [?]). In an interesting twist, such physical theories
have been used in the past decade to design a model for quantum computation; see Chapter 20.

From 1930s to the 1950s, researchers focused on the theory of computability and showed that
several interesting computational tasks are inherently uncomputable: no computer can solve them
without going into infinite loops (i.e., never halting) on certain inputs. Though a beautiful theory,
it will not be our focus here. (But, see the texts [?, ?, ?, ?].) Instead, we focus on issues of com-
putational efficiency. Computational complexity theory is concerned with how much computational
resources are required to solve a given task. The questions it studies include the following:

1. Many computational tasks involve searching for a solution across a vast space of possibilities
(for example, the aforementioned tasks of solving linear equations and finding a maximal set
of invitees to a dinner party). Is there an efficient search algorithm for all such tasks, or do
some tasks inherently require an exhaustive search?

As we will see in Chapter 2, this is the famous “P vs. NP” question that is considered the
central problem of complexity theory. Computational search tasks of the form above arise
in a host of disciplines including the life sciences, social sciences and operations research,
and computational complexity has provided strong evidence that many of these tasks are
inherently intractable.

2. Can algorithms use randomness (i.e., coin tossing) to speed up computation?

Chapter 7 presents probabilistic algorithms and shows several algorithms and techniques that
use probability to solve tasks more efficiently. But Chapters 16 and 17 show a surprising
recent result giving strong evidence that randomness does not help speed up computation,
in the sense that any probabilistic algorithm can be replaced with a deterministic algorithm
(tossing no coins) that is almost as efficient.

3. Can hard problems be solved quicker if we allow the algorithms to err on a small number of
inputs, or to only compute an approximate solution?

Average-case complexity and approximation algorithms are studied in Chapters 15, 17, 18
and 19. These chapters also show fascinating connections between these questions, the power
of randomness, different notions of mathematical proofs, and the theory of error correcting
codes.

4. Is there any use for computationally hard problems? For example, can we use them to
construct secret codes that are unbreakable? (at least in the universe’s lifetime).

Our society increasingly relies on digital cryptography for commerce and security. As de-
scribed in Chapter 10, these secret codes are built using certain hard computational tasks

Web draft 2007-01-08 21:59



DRAFT

p0.3 (3)

such as factoring integers. The security of digital cryptography is intimately related to the P
vs. NP question (see Chapter 2) and average-case complexity (see Chapters 15).

5. Can we use the counterintuitive quantum mechanical properties of our universe to solve hard
problems faster?

Chapter 20 describes the fascinating notion of quantum computers that use such properties to
speed up certain computations. Although there are many theoretical and practical obstacles
to actually building such computers, they have generated tremendous interest in recent years.
This is not least due to Shor’s algorithm that showed that, if built, quantum computers will be
able to factor integers efficiently. (Thus breaking many of the currently used cryptosystems.)

6. Can we generate mathematical proofs automatically? Can we check a mathematical proof
by only reading 3 probabilistically chosen letters from it? Do interactive proofs, involving
a dialog between prover and verifier, have more power than standard “static” mathematical
proofs?

The notion of proof, central to mathematics, turns out to be central to computational com-
plexity as well, and complexity has shed new light on the meaning of mathematical proofs.
Whether mathematical proofs can be generated automatically turns out to depend on the
P vs. NP question (see Chapter 2). Chapter 18 describes probabilistically checkable proofs.
These are surprisingly robust mathematical proofs that can checked by only reading them in
very few probabilistically chosen locations. Interactive proofs are studied in Chapter 8. Fi-
nally, proof complexity, a subfield of complexity studying the minimal proof length of various
statements, is studied in Chapter 21.

At roughly 40 years of age, Complexity theory is still an infant science. Thus we still do not
have complete answers for any of these questions. (In a surprising twist, computational complexity
has also been used to provide evidence for the hardness to solve some of the questions of . . .
computational complexity; see Chapter 22.) Furthermore, many major insights on these questions
were only found in recent years.

Meaning of efficiency

Now we explain the notion of computational efficiency, using the three examples for computational
tasks we mentioned above. We start with the task of multiplying two integers. Consider two
different methods (or algorithms) to perform this task. The first is repeated addition: to compute
a · b, just add a to itself b− 1 times. The other is the grade-school algorithm illustrated in Figure 1.
Though the repeated addition algorithm is perhaps simpler than the grade-school algorithm, we
somehow feel that the latter is better. Indeed, it is much more efficient. For example, multiplying
577 by 423 using repeated addition requires 422 additions, whereas doing it with the grade-school
algorithm requires only 3 additions and 3 multiplications of a number by a single digit.

We will quantify the efficiency of an algorithm by studying the number of basic operations it
performs as the size of the input increases. Here, the basic operations are addition and multiplication
of single digits. (In other settings, we may wish to throw in division as a basic operation.) The

Web draft 2007-01-08 21:59



DRAFT

p0.4 (4)

5 7 7
4 2 3

1 7 3 1
1 1 5 4

2 3 0 8
2 4 4 0 7 1

Figure 1: Grade-school algorithm for multiplication. Illustrated for computing 577 · 423.

size of the input is the number of digits in the numbers. The number of basic operations used to
multiply two n-digit numbers (i.e., numbers between 10n−1 and 10n) is at most 2n2 for the grade-
school algorithm and at least n10n−1 for repeated addition. Phrased this way, the huge difference
between the two algorithms is apparent: even for 11-digit numbers, a pocket calculator running the
grade-school algorithm would beat the best current supercomputer running the repeated addition
algorithm. For slightly larger numbers even a fifth grader with pen and paper would outperform a
supercomputer. We see that the efficiency of an algorithm is to a considerable extent much more
important than the technology used to execute it.

Surprisingly enough, there is an even faster algorithm for multiplication that uses the Fast
Fourier Transform. It was only discovered some 40 years ago and multiplies two n-digit numbers
using cn log n operations where c is some absolute constant independent of n. (Using asymptotic
notation, we call this an O(n log n)-step algorithm; see Chapter 1.)

Similarly, for the task of solving linear equations, the classic Gaussian elimination algorithm
(named after Gauss but already known in some form to Chinese mathematicians of the first century)
uses O(n3) basic arithmetic operations to solve n equations over n variables. In the late 1960’s,
Strassen found a more efficient algorithm that uses roughly O(n2.81) operations, and the best current
algorithm takes O(n2.376) operations.

The dinner party task also has an interesting story. As in the case of multiplication, there is an
obvious and simple inefficient algorithm: try all possible subsets of the n people from the largest
to the smallest, and stop when you find a subset that does not include any pair of guests who
are not on speaking terms. This algorithm can take as much time as the number of subsets of a
group of n people, which is 2n. This is highly unpractical —an organizer of, say, a 70-person party,
would need to plan it at least a thousand years in advance, even if she has a supercomputer at her
disposal. Surprisingly, we still do not know of a significantly better algorithm. In fact, as we will
see in Chapter 2, we have reasons to suspect that no efficient algorithm exists for this task. We
will see that it is equivalent to the independent set computational problem, which, together with
thousands of other important problems, is NP-complete. The famous “P versus NP” question
asks whether or not any of these problems has an efficient algorithm.

Proving nonexistence of efficient algorithms

We have seen that sometimes computational tasks have nonintuitive algorithms that are more
efficient than algorithms that were known for thousands of years. It would therefore be really

Web draft 2007-01-08 21:59



DRAFT

p0.5 (5)

interesting to prove for some computational tasks that the current algorithm is the best —in other
words, no better algorithms exist. For instance, we could try to prove that the O(n log n)-step
algorithm for multiplication can never be improved (thus implying that multiplication is inherently
more difficult than addition, which does have an O(n)-step algorithm). Or, we could try to prove
that there is no algorithm for the dinner party task that takes fewer than 2n/10 steps.

Since we cannot very well check every one of the infinitely many possible algorithms, the only
way to verify that the current algorithm is the best is to mathematically prove that there is no better
algorithm. This may indeed be possible to do, since computation can be given a mathematically
precise model. There are several precedents for proving impossibility results in mathematics, such
as the independence of Euclid’s parallel postulate from the other basic axioms of geometry, or the
impossibility of trisecting an arbitrary angle using a compass and straightedge. Such results count
among the most interesting, fruitful, and surprising results in mathematics.

Given the above discussion, it is no surprise that mathematical proofs are the main tool of
complexity theory, and that this book is filled with theorems, definitions and lemmas. However,
we hardly use any fancy mathematics and so the main prerequisite for this book is the ability to
read (and perhaps even enjoy!) mathematical proofs. The reader might want to take a quick look
at Appendix A, that reviews mathematical proofs and other notions used, and come back to it as
needed.

We conclude with another quote from Hilbert’s 1900 lecture:

Proofs of impossibility were effected by the ancients ... [and] in later mathematics, the
question as to the impossibility of certain solutions plays a preminent part. ...

In other sciences also one meets old problems which have been settled in a manner most
satisfactory and most useful to science by the proof of their impossibility. ... After
seeking in vain for the construction of a perpetual motion machine, the relations were
investigated which must subsist between the forces of nature if such a machine is to be
impossible; and this inverted question led to the discovery of the law of the conservation
of energy. ...

It is probably this important fact along with other philosophical reasons that gives rise
to conviction ... that every definite mathematical problem must necessary be susceptible
of an exact settlement, either in the form of an actual answer to the question asked, or
by the proof of the impossibility of its solution and therewith the necessary failure of all
attempts. ... This conviction... is a powerful incentive to the worker. We hear within
us the perpetual call: There is the problem. Seek its solution. You can find it by pure
reason, for in mathematics there is no ignorabimus.

Web draft 2007-01-08 21:59



DRAFT

p0.6 (6)

Web draft 2007-01-08 21:59



DRAFT

p0.7 (7)

Conventions: A whole number is a number in the set Z = {0,±1,±2, . . .}. A number denoted
by one of the letters i, j, k, `, m, n is always assumed to be whole. If n ≥ 1, then we denote by [n]
the set {1, . . . , n}. For a real number x, we denote by dx e the smallest n ∈ Z such that n ≥ x and
by bx c the largest n ∈ Z such that n ≤ x. Whenever we use a real number in a context requiring
a whole number, the operator d e is implied. We denote by log x the logarithm of x to the base 2.
We say that a condition holds for sufficiently large n if it holds for every n ≥ N for some number N
(for example, 2n > 100n2 for sufficiently large n). We use expressions such as

∑
i f(i) (as opposed

to, say,
∑n

i=1 f(i)) when the range of values i takes is obvious from the context. If u is a string or
vector, then ui denotes the value of the ith symbol/coordinate of u.

Web draft 2007-01-08 21:59



DRAFT

p0.8 (8)

Web draft 2007-01-08 21:59


	Introduction

