
DRAFT

i

Computational Complexity: A Modern
Approach

Draft of a book: Dated January 2007
Comments welcome!

Sanjeev Arora and Boaz Barak
Princeton University

complexitybook@gmail.com

Not to be reproduced or distributed without the authors’ permission

This is an Internet draft. Some chapters are more finished than others. References and
attributions are very preliminary and we apologize in advance for any omissions (but hope you

will nevertheless point them out to us).

Please send us bugs, typos, missing references or general comments to
complexitybook@gmail.com — Thank You!!

DRAFT

ii

DRAFT

Chapter 4

Space complexity

“(our) construction... also suggests that what makes “games” harder than “puzzles”
(e.g. NP-complete problems) is the fact that the initiative (“the move”) can shift
back and forth between the players.”
Shimon Even and Robert Tarjan, 1976

In this chapter we will study the memory requirements of computational tasks. To do this we
define space-bounded computation, which has to be performed by the TM using a restricted number
of tape cells, the number being a function of the input size. We also study nondeterministic space-
bounded TMs. As in the chapter on NP, our goal in introducing a complexity class is to “capture”
interesting computational phenomena— in other words, identify an interesting set of computational
problems that lie in the complexity class and are complete for it. One phenomenon we will “capture”
this way (see Section 4.3.2) concerns computation of winning strategies in 2-person games, which
seems inherently different from (and possibly more difficult than) solving NP problems such as
SAT, as alluded to in the above quote. The formal definition of deterministic and non-deterministic
space bounded computation is as follows (see also Figure 4.1):

Input
tape

Work
tape

Output
tape

Register

read only head

read/write head

read/write head

Figure 4.1: Space bounded computation. Only cells used in the read/write tapes count toward the space bound.

Web draft 2007-01-08 22:00
Complexity Theory: A Modern Approach. © 2006 Sanjeev Arora and Boaz Barak. References and attributions are
still incomplete.

p4.1 (75)

DRAFT

p4.2 (76) 4.1. CONFIGURATION GRAPHS.

Definition 4.1 (Space-bounded computation.)
Let S : N → N and L ⊆ {0, 1}∗. We say that L ∈ SPACE(s(n)) (resp. L ∈
NSPACE(s(n))) if there is a constant c and TM (resp. NDTM) M deciding L
such that on every input x ∈ {0, 1}∗, the total number of locations that are at some
point non-blank during M ’s execution on x is at most c·s(|x|). (Non-blank locations
in the read-only input tape do not count.)

As in our definitions of all nondeterministic complexity classes, we require all branches of
nondeterministic machines to always halt.

Remark 4.2
Analogously to time complexity, we will restrict our attention to space bounds S : N → N that are
space-constructible functions, by which we mean that there is a TM that computes S(n) in O(S(n))
space when given 1n as input. (Intuitively, if S is space-constructible, then the machine “knows”
the space bound it is operating under.) This is a very mild restriction since functions of interest,
including log n,n and 2n, are space-constructible.

Also, realize that since the work tape is separated from the input tape, it makes sense to consider
space-bounded machines that use space less than the input length, namely, S(n) < n. (This is in
contrast to time-bounded computation, where DTIME(T (n)) for T (n) < n does not make much
sense since the TM does not have enough time to read the entire input.) We will assume however
that S(n) > log n since the work tape has length n, and we would like the machine to at least be
able to “remember” the index of the cell of the input tape that it is currently reading. (One of the
exercises explores classes that result when S(n) � log n.)

Note that DTIME(S(n)) ⊆ SPACE(S(n)) since a TM can access only one tape cell per step.
Also, notice that space can be reused : a cell on the work tape can be overwritten an arbitrary
number of times. A space S(n) machine can easily run for as much as 2Ω(S(n)) steps —think
for example of the machine that uses its work tape of size S(n) to maintain a counter which it
increments from 1 to 2S(n)−1. The next easy theorem (whose proof appears a little later) shows
that this is tight in the sense that any languages in SPACE(S(n)) (and even NSPACE(S(n)))
is in DTIME(2O(S(n))). Surprisingly enough, up to logarithmic terms, this theorem contains the
only relationships we know between the power of space-bounded and time-bounded computation.
Improving this would be a major result.

Theorem 4.3
For every space constructible S : N → N,

DTIME(S(n)) ⊆ SPACE(S(n)) ⊆ NSPACE(S(n)) ⊆ DTIME(2O(S(n)))

4.1 Configuration graphs.

To prove Theorem 4.3 we use the notion of a configuration graph of a Turing machine. This notion
will also be quite useful for us later in this chapter and the book. Let M be a (deterministic or

Web draft 2007-01-08 22:00

DRAFT

4.1. CONFIGURATION GRAPHS. p4.3 (77)

Cstart

Caccept
αqβ

Figure 4.2: The configuration graph GM,x is the graph of all configurations of M ’s execution on x where there is
an edge from a configuration C to a configuration C′ if C′ can be obtained from C in one step. It has out-degree one
if M is deterministic and out-degree at most two if M is non-deterministic.

non-deterministic) TM. A configuration of a TM M consists of the contents of all non-blank entries
of M ’s tapes, along with its state and head position, at a particular point in its execution. For
every TM M and input x ∈ {0, 1}∗, the configuration graph of M on input x, denoted GM,x, is
a directed graph whose nodes correspond to possible configurations that M can reach from the
starting configuration Cx

start (where the input tape is initialized to contain x). The graph has a
directed edge from a configuration C to a configuration C ′ if C ′ can be reached from C in one
step according to M ’s transition function (see Figure 4.2). Note that if M is deterministic then
the graph has out-degree one, and if M is non-deterministic then it has an out-degree at most two.
Also note that we can assume that M ’s computation on x does not repeat the same configuration
twice (as otherwise it will enter into an infinite loop) and hence that the graph is a directed acyclic
graph (DAG). By modifying M to erase all its work tapes before halting, we can assume that there
is only a single configuration Caccept on which M halts and outputs 1. This means that M accepts
the input x iff there exists a (directed) path in GM,x from Cstart to Caccept. We will use the following
simple claim about configuration graphs:

Claim 4.4
Let GM,x be the configuration graph of a space-S(n) machine M on some input x of length n.
Then,

1. Every vertex in GM,x can be described using cS(n) bits for some constant c (depending on
M ’s alphabet size and number of tapes) and in particular, GM,x has at most 2cS(n) nodes.

2. There is anO(S(n))-size CNF formula ϕM,x such that for every two strings C,C ′, ϕM,x(C,C ′) =
1 if and only if C,C ′ encode two neighboring configuration in GM,x.

Proof sketch: Part 1 follows from observing that a configuration is completely described by
giving the contents of all work tapes, the position of the head, and the state that the TM is in
(see Section 1.2.1). We can encode a configuration by first encoding the snapshot (i.e., state and
current symbol read by all tapes) and then encoding in sequence the non-blank contents of all the
work-tape, inserting a special “marker” symbol, to denote the locations of the heads.

Web draft 2007-01-08 22:00

DRAFT

p4.4 (78) 4.2. SOME SPACE COMPLEXITY CLASSES.

Part 2 follows using similar ideas as in the proof of the Cook-Levin theorem (Theorem 2.10).
There we showed that deciding whether two configurations are neighboring can be expressed as the
AND of many checks, each depending on only a constant number of bits, where such checks can be
expressed by constant-sized CNF formulae by Claim 2.14. �

Now we can prove Theorem 4.3.
Proof of Theorem 4.3: Clearly SPACE(S(n)) ⊆ NSPACE(S(n)) and so we just need to
show NSPACE(S(n)) ⊆ DTIME(2O(S(n))). By enumerating over all possible configurations we
can construct the graph GM,x in 2O(S(n))-time and check whether Cstart is connected to Caccept

in GM,x using the standard (linear in the size of the graph) breadth-first search algorithm for
connectivity (e.g., see [?]). �

We also note that there exists a universal TM for space bounded computation analogously
to Theorems 1.13 and ?? for deterministic and non-deterministic time bounded computation, see
Section ?? below.

4.2 Some space complexity classes.

Now we define some complexity classes, where PSPACE,NPSPACE are analogs of P and NP
respectively.

Definition 4.5
PSPACE = ∪c>0SPACE(nc)
NPSPACE = ∪c>0NSPACE(nc)
L = SPACE(log n)
NL = NSPACE(log n)

Example 4.6
We show how 3SAT ∈ PSPACE by describing a TM that decides 3SAT in linear space (that is,
O(n) space, where n is the size of the 3SAT instance). The machine just uses the linear space to
cycle through all 2k assignments in order, where k is the number of variables. Note that once an
assignment has been checked it can be erased from the worktape, and the worktape then reused
to check the next assignment. A similar idea of cycling through all potential certificates applies to
any NP language, so in fact NP ⊆ PSPACE.

Example 4.7
The reader should check (using the gradeschool method for arithmetic) that the following languages
are in L:

EVEN = {x : x has an even number of 1s} .

MULT = {(xny, xmy, xnmy) : n ∈ N} .

Web draft 2007-01-08 22:00

DRAFT

4.3. PSPACE COMPLETENESS p4.5 (79)

Its seems difficult to conceive of any complicated computations apart from arithmetic that use
only O(log n) space. Nevertheless, we cannot currently even rule out that 3SAT ∈ L (in other
words —see the exercises— it is open whether NP 6= L). Space-bounded computations with space
S(n) � n seem relevant to computational problems such as web crawling. The world-wide-web
may be viewed crudely as a directed graph, whose nodes are webpages and edges are hyperlinks.
Webcrawlers seek to explore this graph for all kinds of information. The following problem PATH
is natural in this context:

PATH = {〈G, s, t〉 : G is a directed graph in which there is a path from s to t} (1)

We claim that PATH ∈ NL. The reason is that a nondeterministic machine can take a “non-
deterministic walk” starting at s, always maintaining the index of the vertex it is at, and using
nondeterminism to select a neighbor of this vertex to go to next. The machine accepts iff the walk
ends at t in at most n steps, where n is the number of nodes. If the nondeterministic walk has
run for n steps already and t has not been encountered, the machine rejects. The work tape only
needs to hold O(log n) bits of information at any step, namely, the number of steps that the walk
has run for, and the identity of the current vertex.

Is PATH in L as well? This is an open problem, which, as we will shortly see, is equivalent to
whether or not L = NL. That is, PATH captures the “essence” of NL just as 3SAT captures the
“essence” of NP. (Formally, we will show that PATH is NL-complete.) A recent surprising result
shows that the restriction of PATH to undirected graphs is in L; see Chapters 7 and 16.

4.3 PSPACE completeness

As already indicated, we do not know if P 6= PSPACE, though we strongly believe that the answer
is YES. Notice, P = PSPACE implies P = NP. Since complete problems can help capture the
essence of a complexity class, we now present some complete problems for PSPACE.

Definition 4.8
A language A is PSPACE-hard if for every L ∈ PSPACE, L ≤p A. If in addition A ∈ PSPACE
then A is PSPACE-complete.

Using our observations about polynomial-time reductions from Chapter ?? we see that if any
PSPACE-complete language is in P then so is every other language in PSPACE. Viewed con-
trapostively, if PSPACE 6= P then a PSPACE-complete language is not in P. Intuitively, a
PSPACE-complete language is the “most difficult” problem of PSPACE. Just as NP trivially
contains NP-complete problems, so does PSPACE. The following is one (Exercise 3):

SPACETM = {〈M,w, 1n〉 : DTM M accepts w in space n} . (2)

Now we see some more interesting PSPACE-complete problems. We use the notion of a
quantified boolean formula, which is a boolean formula in which variables are quantified using ∃

Web draft 2007-01-08 22:00

DRAFT

p4.6 (80) 4.3. PSPACE COMPLETENESS

and ∀ which have the usual meaning “there exists” and “for all” respectively. It is customary
to also specify the universe over which these signs should be interpreted, but in our case the
universe will always be the truth values {0, 1}. Thus a quantified boolean formula has the form
Q1x1Q2x2 · · ·Qnxnϕ(x1, x2, . . . , xn) where each Qi is one of the two quantifiers ∀ or ∃ and ϕ is an
(unquantified) boolean formula1.

If all variables in the formula are quantified (in other words, there are no free variables) then a
moment’s thought shows that such a formula is either true or false —there is no “middle ground”.
We illustrate the notion of truth by an example.

Example 4.9
Consider the formula ∀x∃y (x∧ y)∨ (x∧ y) where ∀ and ∃ quantify over the universe {0, 1}. Some
reflection shows that this is saying “for every x ∈ {0, 1} there is a y ∈ {0, 1} that is different from
it”, which we can also informally represent as ∀x∃y(x 6= y). This formula is true. (Note: the
symbols = and 6= are not logical symbols per se, but are used as informal shorthand to make the
formula more readable.)

However, switching the second quantifier to ∀ gives ∀x∀y (x ∧ y) ∨ (x ∧ y), which is false.

Example 4.10
Recall that the SAT problem is to decide, given a Boolean formula ϕ that has n free variables
x1, . . . , xn, whether or not ϕ has a satisfying assignment x1, . . . , xn ∈ {0, 1}n such that ϕ(x1, . . . , xn)
is true. An equivalent way to phrase this problem is to ask whether the quantified Boolean formula
ψ = ∃x1, . . . , xnϕ(x1, . . . , xn) is true.

The reader should also verify that the negation of the formula
Q1x1Q2x2 · · ·Qnxnϕ(x1, x2, . . . , xn) is the same as

Q′
1x1Q

′
2x2 · · ·Q′

nxn¬ϕ(x1, x2, . . . , xn),

where Q′
i is ∃ if Qi was ∀ and vice versa. The switch of ∃ to ∀ in case of SAT gives instances of

TAUTOLOGY, the coNP-complete language encountered in Chapter ??.

We define the language TQBF to be the set of quantified boolean formulae that are true.

1 We are restricting attention to quantified boolean formulae which are in prenex normal form, i.e., all quantifiers
appear to the left. However, this is without loss of generality since we can transform a general formula into an
equivalent formula in prenex form in polynomial time using identities such as p∨∃xϕ(x) = ∃xp∨ϕ(x) and ¬∀xφ(x) =
∃x¬φ(x). Also note that unlike in the case of the SAT and 3SAT problems, we do not require that the inner
unquantified formula ϕ is in CNF or 3CNF form. However this choice is also not important, since using auxiliary
variables in a similar way to the proof of the Cook-Levin theorem, we can in polynomial-time transform a general
quantified Boolean formula to an equivalent formula where the inner unquantified formula is in 3CNF form.

Web draft 2007-01-08 22:00

DRAFT

4.3. PSPACE COMPLETENESS p4.7 (81)

Theorem 4.11
TQBF is PSPACE-complete.

Proof: First we show that TQBF ∈ PSPACE. Let

ψ = Q1x1Q2x2 . . . Qnxnϕ(x1, x2, . . . , xn) (3)

be a quantified Boolean formula with n variables, where we denote the size of ϕ by m. We show a
simple recursive algorithm A that can decide the truth of ψ in O(n+m) space. We will solve the
slightly more general case where, in addition to variables and their negations, ϕ may also include
the constants 0 (i.e., “false”) and 1 (i.e., “true”). If n = 0 (there are no variables) then the formula
contains only constants and can be evaluated in O(m) time and space. Let n > 0 and let ψ be
as in (3). For b ∈ {0, 1}, denote by ψ�x1=b the modification of ψ where the first quantifier Q1

is dropped and all occurrences of x1 are replaced with the constant b. Algorithm A will work as
follows: if Q1 = ∃ then output 1 iff at least one of A(ψ�x1=0) and A(ψ�x1=1) returns 1. If Q1 = ∀
then output 1 iff both A(ψ�x1=0) and A(ψ�x1=1). By the definition of ∃ and ∀, it is clear that A
does indeed return the correct answer on any formula ψ.

Let sn,m denote the spaceA uses on formulas with n variables and description sizem. The crucial
point is —and here we use the fact that space can be reused—that both recursive computations
A(ψ�x1=0) and A(ψ�x1=1) can run in the same space. Specifically, after computing A(ψ�x1=0), the
algorithm A needs to retain only the single bit of output from that computation, and can reuse
the rest of the space for the computation of A(ψ�x1=1). Thus, assuming that A uses O(m) space to
write ψ� x1 = b for its recursive calls, we’ll get that sn,m = sn−1,m +O(m) yielding sn,m = O(n ·m).
2

We now show that L ≤p TQBF for every L ∈ PSPACE. Let M be a machine that decides
L in S(n) space and let x ∈ {0, 1}n. We show how to construct a quantified Boolean formula
ψ of size O(S(n)2) that is true iff M accepts x. Recall that by Claim 4.4, there is a Boolean
formula ϕM,x such that for every two strings C,C ′ ∈ {0, 1}m (where m = O(S(n)) is the number
of bits require to encode a configuration of M), ϕM (C,C ′) = 1 iff C and C ′ are valid encodings of
two adjacent configurations in the configuration graph GM,x. We will use ϕM,x to come up with
a polynomial-sized quantified Boolean formula ψ′ that has polynomially many Boolean variables
bound by quantifiers and additional 2m unquantified Boolean variables C1, . . . , Cm, C

′
1, . . . , C

′
m (or,

equivalently, two variables C,C ′ over {0, 1}m) such that for every C,C ′ ∈ {0, 1}m, ψ(C,C ′) is true
iff C has a directed path to C ′ in GM,x. By plugging in the values Cstart and Caccept to ψ′ we get a
quantified Boolean formula ψ that is true iff M accepts x.

We define the formula ψ′ inductively. We let ψi(C,C ′) be true if and only if there is a path of
length at most 2i from C to C ′ in GM,x. Note that ψ′ = ψm and ψ0 = ϕM,x. The crucial observation
is that there is a path of length at most 2i from C to C ′ if and only if there is a configuration C ′′

2The above analysis already suffices to show that TQBF is in PSPACE. However, we can actually show that the
algorithm runs in linear space, specifically, O(m+n) space. Note that algorithm always works with restrictions of the
same formula ψ. So it can keep a global partial assignment array that for each variable xi will contain either 0, 1 or
’q’ (if it’s quantified and not assigned any value). Algorithm A will use this global space for its operation, where in
each call it will find the first quantified variable, set it to 0 and make the recursive call, then set it to 1 and make the
recursive call, and then set it back to ’q’. We see that A’s space usage is given by the equation sn,m = sn−1,m +O(1)
and hence it uses O(n+m) space.

Web draft 2007-01-08 22:00

DRAFT

p4.8 (82) 4.3. PSPACE COMPLETENESS

with such that there are paths of length at most 2i−1 path from C to C ′′ and from C ′′ to C ′. Thus
the following formula suggests itself: ψi(C,C ′) = ∃C ′′ ψi−1(C,C ′) ∧ ψi−1(C ′′, C).

However, this formula is no good. It implies that ψi’s is twice the size of ψi−1, and a simple
induction shows that ψm has size about 2m, which is too large. Instead, we use additional quantified
variables to save on description size, using the following more succinct definition for ψi(C,C ′):

∃C ′′∀D1∀D2
(
(D1 = C ∧D2 = C ′) ∨ (D1 = C ′ ∧D2 = C ′′)

)
⇒ ψi−1(D1, D2)

(Here, as in Example 4.9, = and ⇒ are convenient shorthands, and can be replaced by appropriate
combinations of the standard Boolean operations ∧ and ¬.) Note that size(ψi) ≤ size(ψi−1)+O(m)
and hence size(ψm) ≤ O(m2). We leave it to the reader to verify that the two definitions of ψi

are indeed logically equivalent. As noted above we can convert the final formula to prenex form in
polynomial time. �

4.3.1 Savitch’s theorem.

The astute reader may notice that because the above proof uses the notion of a configuration graph
and does not require this graph to have out-degree one, it actually yields a stronger statement: that
TQBF is not just hard for PSPACE but in fact even for NPSPACE!. Since TQBF ∈ PSPACE
this implies that PSPACE = NSPACE, which is quite surprising since our intuition is that the
corresponding classes for time (P and NP) are different. In fact, using the ideas of the above proof,
one can obtain the following theorem:

Theorem 4.12 (Savitch [?])
For any space-constructible S : N → N with S(n) ≥ logn, NSPACE(S(n)) ⊆ SPACE(S(n)2)

We remark that the running time of the algorithm obtained from this theorem can be as high
as 2Ω(s(n)2).
Proof: The proof closely follows the proof that TQBF is PSPACE-complete. Let L ∈ NSPACE(S(n))
be a language decided by a TM M such that for every x ∈ {0, 1}n, the configuration graph
G = GM,x has at most M = 2O(S(n)) vertices. We describe a recursive procedure reach?(u, v, i)
that returns “YES” if there is a path from u to v of length at most 2i and “NO” otherwise. Note
that reach?(s, t, d logM e) is “YES” iff t is reachable from s. Again, the main observation is
that there is a path from u to v of length at most 2i iff there’s a vertex z with paths from u
to z and from z to v of lengths at most 2i−1. Thus, on input u, v, i, reach? will enumerate
over all vertices z (at a cost of O(logM) space) and output “YES” if it finds one z such that
reach?(u, z, i− 1)=“YES” and reach?(z, v, i− 1)=“YES”. Once again, the crucial observation is
that although the algorithm makes n recursive invocations, it can reuse the space in each of these
invocations. Thus, if we let sM,i be the space complexity of reach?(u, v, i) on an M -vertex graph
we get that sM,i = sM,i−1 +O(logM) and thus sM,log M = O(log2M) = O(S(n)2). �

4.3.2 The essence of PSPACE: optimum strategies for game-playing.

Recall that the central feature of NP-complete problems is that a yes answer has a short certificate.
The analogous unifying concept for PSPACE-complete problems seems to be that of a winning

Web draft 2007-01-08 22:00

DRAFT

4.3. PSPACE COMPLETENESS p4.9 (83)

strategy for a 2-player game with perfect information. A good example of such a game is Chess: two
players alternately make moves, and the moves are made on a board visible to both. Thus moves
have no hidden side effects; hence the term “perfect information.” What does it mean for a player
to have a “winning strategy?” The first player has a winning strategy iff there is a 1st move for
player 1 such that for every possible 1st move of player 2 there is a 2nd move of player 1 such that....
(and so on) such that at the end player 1 wins. Thus deciding whether or not the first player has
a winning strategy seems to require searching the tree of all possible moves. This is reminiscent of
NP, for which we also seem to require exponential search. But the crucial difference is the lack of
a short “certificate” for the statement “Player 1 has a winning strategy,” since the only certificate
we can think of is the winning strategy itself, which as noticed, requires exponentially many bits
to even describe. Thus we seem to be dealing with a fundamentally different phenomenon than the
one captured by NP.

The interplay of existential and universal quantifiers in the description of the the winning
strategy motivates us to invent the following game.

Example 4.13 (The QBF game)
The “board” for the QBF game is a Boolean formula ϕ whose free variables are x1, x2, . . . , x2n.
The two players alternately make moves, which involve picking values for x1, x2, . . . , in order. Thus
player 1 will pick values for the odd-numbered variables x1, x3, x5, . . . (in that order) and player 2
will pick values for the even-numbered variables x2, x4, x6, . . . ,. We say player 1 wins iff at the end
ϕ becomes true.

Clearly, player 1 has a winning strategy iff

∃x1∀x2∃x3∀x4 · · · ∀x2nϕ(x1, x2, . . . , x2n),

namely, iff this quantified boolean formula is true.
Thus deciding whether player 1 has a winning strategy for a given board in the QBF game is

PSPACE-complete.

At this point, the reader is probably thinking of familiar games such as Chess, Go, Checkers
etc. and wondering whether complexity theory may help differentiate between them—for example,
to justify the common intuition that Go is more difficult than Chess. Unfortunately, formalizing
these issues in terms of asymptotic complexity is tricky because these are finite games, and as far as
the existence of a winning strategy is concerned, there are at most three choices: Player 1 has has a
winning strategy, Player 2 does, or neither does (they can play to a draw). However, one can study
generalizations of these games to an n × n board where n is arbitrarily large —this may involve
stretching the rules of the game since the definition of chess seems tailored to an 8 × 8 board—
and then complexity theory can indeed by applied. For most common games, including chess,
determining which player has a winning strategy in the n × n version is PSPACE-complete (see
[?]or [?]). Note that if NP 6= PSPACE then in general there is no short certificate for exhibiting
that either player in the TQBF game has a winning strategy, which is alluded to in Evens and
Tarjan’s quote at the start of the chapter.

Web draft 2007-01-08 22:00

DRAFT

p4.10 (84) 4.4. NL COMPLETENESS

Proving PSPACE-completeness of games may seem like a frivolous pursuit, but similar ideas
lead to PSPACE-completeness of some practical problems. Usually, these involve repeated moves
that are in turn counteracted by an adversary. For instance, many computational problems of
robotics are PSPACE-complete: the “player” is the robot and the “adversary” is the environment.
(Treating the environment as an adversary may appear unduly pessimistic; but unfortunately even
assuming a benign or “indifferent” environment still leaves us with a PSPACE-complete problem;
see the Chapter notes.)

4.4 NL completeness

Now we consider problems that form the “essence” of non-deterministic logarithmic space com-
putation, in other words, problems that are complete for NL. What kind of reduction should we
use? We cannot use the polynomial-time reduction since NL ⊆ P. Thus every language in NL is
polynomial-time reducible to the trivial language {1} (reduction: “decide using polynomial time
whether or not the input is in the NL language, and then map to 1 or 0 accordingly”). Intuitively,
such trivial languages should not be the “hardest” languages of NL.

When choosing the type of reduction to define completeness for a complexity class, we must keep
in mind the complexity phenomenon we seek to understand. In this case, the complexity question is
whether or not NL = L. The reduction should not be more powerful than the weaker class, which is
L. For this reason we use logspace reductions —for further, justification, see part (b) of Lemma 4.15
below). To define such reductions we must tackle the tricky issue that a reduction typically maps
instances of size n to instances of size at least n, and so a logspace machine computing such a
reduction does not have even the memory to write down its output. The way out is to require that
the reduction should be able to compute any desired bit of the output in logarithmic space. In
other words, if the reduction were given a separate output tape, it could in principle write out the
entire new instance by first computing the first bit, then the second bit, and so on. (Many texts
define such reductions using a “write-once” output tape.) The formal definition is as follows.

Definition 4.14 (logspace reduction)
Let f : {0, 1}∗ → {0, 1}∗ be a polynomially-bounded function (i.e., there’s a constant c > 0 such
that f(x) ≤ |x|c for every x ∈ {0, 1}∗). We say that f is implicitly logspace computable, if the
languages Lf = {〈x, i〉 | f(x)i = 1} and L′

f = {〈x, i〉 | i ≤ |f(x)|} are in L.
Informally, we can think of a single O(log |x|)-space machine that given input (x, i) outputs

f(x)|i provided i ≤ |f(x)|.
Language A is logspace reducible to language B, denoted A ≤l B, if there is a function f :

{0, 1}∗ → {0, 1}∗ that is implicitly logspace computable and x ∈ A iff f(x) ∈ B for every x ∈ {0, 1}∗.

Logspace reducibility satisfies usual properties one expects.

Lemma 4.15
(a) If A ≤l B and B ≤l C then A ≤l C. (b) If A ≤l B and B ∈ L then A ∈ L.

Proof: We prove that if f, g are two functions that are logspace implicitly computable, then so
is the function h where h(x) = g(f(x)). Then part (a) of the Lemma follows by letting f be the

Web draft 2007-01-08 22:00

DRAFT

4.4. NL COMPLETENESS p4.11 (85)

reduction from A to B and g be the reduction from B to C. Part (b) follows by letting f be the
reduction from A to B and g be the characteristic function of B (i.e. g(y) = 1 iff y ∈ B).

So let Mf ,Mg be the logspace machines that compute the mappings x, i 7→ f(x)i and y, j 7→
g(y)j respectively. We construct a machine Mh that computes the mapping x, j 7→ g(f(x))j , in
other words, given input x, j outputs g(f(x))j provided j ≤ |g(f(x))|. Machine Mh will pretend
that it has an additional (fictitious) input tape on which f(x) is written, and it is merely simulating
Mg on this input (see Figure 4.3). Of course, the true input tape has x, j written on it. To maintain
its fiction, Mh always maintains on its worktape the index, say i, of the cell on the fictitious tape
that Mg is currently reading; this requires only log |f(x)| space. To compute for one step, Mg needs
to know the contents of this cell, in other words, f(x)|i. At this point Mh temporarily suspends its
simulation of Mg (copying the contents of Mg’s worktape to a safe place on its own worktape) and
invokes Mf on inputs x, i to get f(x)|i. Then it resumes its simulation of Mg using this bit. The
total space Mh uses is O(log |g(f(x))|+ s(|x|) + s′(|f(x)|)) = O(log |x|). �

Input
tape

Work
tape

Output
tape

> 0 0 0 1 1 0 1 0 0 0 1 0 0 0 0

read only headread/write head

Mf

Work
tape

Output
tape

Virtual
input
tape

Mg

Figure 4.3: Composition of two implicitly logspace computable functions f, g. The machine Mg uses calls to f to
implement a “virtual input tape”. The overall space used is the space of Mf + the space of Mg + O(log |f(x)|) =
O(log|x|).

We say that A is NL-complete if it is in NL and for every B ∈ NL, A ≤l B. Note that an
NL-complete language is in L iff NL =L.

Theorem 4.16
PATH is NL-complete.

Proof: We have already seen that PATH is in NL. Let L be any language in NL and M be a
machine that decides it in space O(log n). We describe a logspace implicitly computable function
f that reduces L to PATH. For any input x of size n, f(x) will be the configuration graph GM,x

whose nodes are all possible 2O(log n) configurations of the machine on input x, along with the start
configuration Cstart and the accepting configuration Cacc. In this graph there is a path from Cstart

to Cacc iff M accepts x. The graph is represented as usual by an adjacency matrix that contain
1 in the 〈C,C ′〉th position (i.e., in the Cth row and C ′th column if we identify the configurations
with numbers between 0 and 2O(log n)) iff there’s an edge C from C ′ in GM,x. To finish the proof
we need to show that this adjacency matrix can be computed by a logspace reduction. This is easy

Web draft 2007-01-08 22:00

DRAFT

p4.12 (86) 4.4. NL COMPLETENESS

since given a 〈C,C ′〉 a deterministic machine can in space O(|C|+ |C ′|) = O(log |x|) examine C,C ′

and check whether C ′ is one of the (at most two) configurations that can follow C according to the
transition function of M . �

4.4.1 Certificate definition of NL: read-once certificates

In Chapter 2 we gave two equivalent definitions of NP— one using non-deterministic TM’s and
another using the notion of a certificate. The idea was that the nondeterministic choices of the
NDTM that lead it to accept can be viewed as a “certificate” that the input is in the language,
and vice versa. We can give a certificate-based definition also for NL, but only after addressing
one tricky issue: a certificate may be polynomially long, and a logspace machine does not have the
space to store it. Thus, the certificate-based definition of NL assumes that the logspace machine
on a separate read-only tape. Furthermore, on each step of the machine the machine’s head on
that tape can either stay in place or move to the right. In particular, it cannot reread any bit to
the left of where the head currently is. (For this reason the this kind of tape is called “read once”.)
It is easily seen that the following is an alternative definition of NL (see also Figure 4.4):

Input
tape

Work
tape

Output
tape

Register

read only head

read/write head

read/write head

Certificate
tape

read once head

Figure 4.4: Certificate view of NL. The certificate for input x is placed on a special “read-once” tape on which
the machine’s head can never move to the left.

Definition 4.17 (NL- alternative definition.)
A language L is in NL if there exists a deterministic TM M and a with an additional special
read-once input tape polynomial p : N → N such that for every x ∈ {0, 1}∗,

x ∈ L⇔ ∃u ∈ {0, 1}p(|x|) s.t. M(x, u) = 1

where by M(x, u) we denote the output of M where x is placed on its input tape and u is placed
on its special read-once tape, and M uses at most O(log |x|) space on its read/write tapes for every
input x.

Web draft 2007-01-08 22:00

DRAFT

4.4. NL COMPLETENESS p4.13 (87)

4.4.2 NL = coNL

Consider the problem PATH, i.e., the complement of PATH. A decision procedure for this language
must accept when there is no path from s to t in the graph. Unlike in the case of PATH, there
is no natural certificate for the non-existence of a path from s to t and thus it seemed “obvious”
to researchers that PATH 6∈ NL, until the discovery of the following theorem in the 1980s proved
them wrong.

Theorem 4.18 (Immerman-Szlepcsenyi)
PATH ∈ NL.

Proof: As we saw in Section 4.4.1, we need to show an O(log n)-space algorithm A such that
for every n-vertex graph G and vertices s and t, there exists a polynomial certificate u such that
A(〈G, s, t〉, u) = 1 if and only if t is not reachable from u in G, where A has only read-once access
to u.

What can we certify to an O(log n)-space algorithm? Let Ci be the set of vertices that are
reachable from s in G within at most i steps. For every i ∈ [n] and vertex v, we can easily certify
that v is in Ci. The certificate simply contains the labels v0, v1, . . . , vk of the vertices along the
path from s to v (we can assume without loss of generality that vertices are labeled by the numbers
1 to n and hence the labels can be described by log n bit strings). The algorithm can check the
certificate using read-once access by verifying that (1) v0 = s, (2) for j > 0, there is an edge from
vj−1 to vj , (3) vk = v and (using a counter) that (4) the path ends within at most i steps. Note
that the certificate is indeed of size at most polynomial in n.

Our algorithm uses the following two procedures:

1. Procedure to certify that a vertex v is not in Ci given the size of Ci.
2. Procedure to certify that |Ci| = c for some number c, given the size of Ci−1.

Since C0 = {s} and Cn contains all the vertices reachable from s, we can apply the second
procedure iteratively to learn the sizes of the sets C1, . . . , Cn, and then use the first procedure to
certify that t 6∈ Cn.

Certifying that v is not in Ci, given |Ci|. The certificate is simply the list of certificates
that u is in Ci for every u ∈ Ci sorted in ascending order of labels (recall that we identify labels
with numbers in [n]). The algorithm checks that (1) each certificate is valid, (2) the label of a
vertex u for which a certificate is given is indeed larger than the label of the previous vertex, (3)
no certificate is provided for v, and (4) the total number of certificates provided is exactly |Ci|. If
v 6∈ Ci then the algorithm will accept the above certificate, but if v ∈ Ci there will not exist |Ci|
certificates that vertices u1 < u2 < . . . < u|Ci| are in Ci where uj 6= v for every j.

Certifying that v is not in Ci, given |Ci−1|. Before showing how we certify that |Ci| = c
given |Ci−1|, we show how to certify that v 6∈ Ci with this information. This is very similar to the
above procedure: the certificate is the list of |Ci−1| certificates that u ∈ Ci−1 for every u ∈ Ci−1 in
ascending order. The algorithm checks everything as before except that in step (3) it verifies that
no certificate is given for v or for a neighbor of v. Since v ∈ Ci if and only if there exists u ∈ Ci−1

such that u = v or u is a neighbor of v in G, the procedure will not accept a false certificate by the
same reasons as above.

Web draft 2007-01-08 22:00

DRAFT

p4.14 (88) 4.4. NL COMPLETENESS

Certifying that |Ci| = c given |Ci−1|. For every vertex v, if v ∈ Ci then there is a certificate for
this fact, and by the above procedure, given |Ci−1|, if v 6∈ Ci then there is a certificate for this fact
as well. The certificate that |Ci| = c will consist of n certificates for each of the vertices 1 to n in
ascending order. For every vertex u, there will be an appropriate certificate depending on whether
u ∈ Ci or not. The algorithm will verify all the certificate and count the number of certificate that
a vertex is in Ci. It accepts if this count is equal to c. �

Using the notion of the configuration graph we can modify the proof of Theorem 4.18 to prove
the following:

Corollary 4.19
For every space constructible S(n) > log n, NSPACE(S(n)) = coNSPACE(S(n)).

Our understanding of space-bounded complexity.
The following is our understanding of space-bounded complexity.

DTIME(s(n))⊆SPACE(s(n))⊆NSPACE(s(n))=coNSPACE(s(n))⊆DTIME(2O(s(n))).

None of the inclusions are known to be strict though we believe they all are.

Chapter notes and history

The concept of space complexity had already been explored in the 1960s; in particular, Savitch’s the-
orem predates the Cook-Levin theorem. Stockmeyer and Meyer proved the PSPACE-completeness
of TQBF soon after Cook’s paper appeared. A few years later Even and Tarjan pointed out the
connection to game-playing and proved the PSPACE-completeness of a game called Generalized
Hex. Papadimitriou’s book gives a detailed account of PSPACE-completeness. He also shows
PSPACE-completeness of several Games against nature first defined in [?]. Unlike the TQBF
game, where one player is Existential and the other Universal, here the second player chooses
moves randomly. The intention is to model games played against nature—where “nature” could
mean not just weather for example, but also large systems such as the stock market that are
presumably “indifferent” to the fate of individuals. Papadimitriou gives an alternative character-
ization PSPACE using such games. A stronger result, namely, a characterization of PSPACE
using interactive proofs, is described in Chapter 8.

Exercises

§1 Show that SPACE(S(n)) = SPACE(0) when S(n) = log log n.

§2 Prove the existence of a universal TM for space bounded computation (analogously to the
deterministic universal TM of Theorem 1.13). That is, prove that there exists a a TM SU
such that for every string α, and input x, if the TM Mα represented by α halts on x before
using t cells of its work tapes then SU(α, t, x) = Mα(x), and moreover, SU uses at most
Ct cells of its work tapes, where C is a constant depending only on Mα. (Despite the fact

Web draft 2007-01-08 22:00

DRAFT

4.4. NL COMPLETENESS p4.15 (89)

that the bound here is better than the bound of Theorem 1.13, the proof of this statement is
actually easier than the proof of Theorem 1.13.)

§3 Prove that the language SPACETM of (2) is PSPACE-complete.

§4 Show that the following language is NL-complete:

{ xGy : G is a strongly connected digraph} .

§5 Show that 2SAT is in NL.

§6 Suppose we define NP-completeness using logspace reductions instead of polynomial-time
reductions. Show (using the proof of the Cook-Levin Theorem) that SAT and 3SAT continue
to be NP-complete under this new definition. Conclude that SAT ∈ L iff NP = L.

§7 Show that TQBF is complete for PSPACE also under logspace reductions.

§8 Show that in every finite 2-person game with perfect information (by finite we mean that
there is an a priori upperbound n on the number of moves after which the game is over and
one of the two players is declared the victor —there are no draws) one of the two players has
a winning strategy.

§9 Define polyL to be ∪c>0SPACE(logc n). Steve’s Class SC (named in honor of Steve Cook)
is defined to be the set of languages that can be decided by deterministic machines that run
in polynomial time and logc n space for some c > 0.

It is an open problem whether PATH ∈ SC. Why does Savitch’s Theorem not resolve this
question?

Is SC the same as polyL ∩P?

Web draft 2007-01-08 22:00

DRAFT

p4.16 (90) 4.4. NL COMPLETENESS

Web draft 2007-01-08 22:00

	Space complexity
	Configuration graphs.
	Some space complexity classes.
	PSPACE completeness
	Savitch's theorem.
	The essence of PSPACE: optimum strategies for game-playing.

	NL completeness
	Certificate definition of NL: read-once certificates
	NL =coNL

	Chapter notes and history
	Exercises

