
DRAFT

i

Computational Complexity: A Modern
Approach

Draft of a book: Dated January 2007
Comments welcome!

Sanjeev Arora and Boaz Barak
Princeton University

complexitybook@gmail.com

Not to be reproduced or distributed without the authors’ permission

This is an Internet draft. Some chapters are more finished than others. References and
attributions are very preliminary and we apologize in advance for any omissions (but hope you

will nevertheless point them out to us).

Please send us bugs, typos, missing references or general comments to
complexitybook@gmail.com — Thank You!!

DRAFT

ii

DRAFT

Chapter 2

NP and NP completeness

“(if φ(n) ≈ Kn2)a then this would have consequences of the greatest magnitude. That
is to say, it would clearly indicate that, despite the unsolvability of the (Hilbert)
Entscheidungsproblem, the mental effort of the mathematician in the case of the
yes-or-no questions would be completely replaced by machines.... (this) seems to me,
however, within the realm of possibility.”
Kurt Gödel in a letter to John von Neumann, 1956

aIn modern terminology, if SAT has a quadratic time algorithm

“I conjecture that there is no good algorithm for the traveling salesman problem.
My reasons are the same as for any mathematical conjecture: (1) It is a legitimate
mathematical possibility, and (2) I do not know.”
Jack Edmonds, 1966

“In this paper we give theorems that suggest, but do not imply, that these problems,
as well as many others, will remain intractable perpetually.”
Richard Karp, 1972

If you have ever attempted a crossword puzzle, you know that there is often a big difference
between solving a problem from scratch and verifying a given solution. In the previous chapter we
encountered P, the class of decision problems that can be efficiently solved. In this chapter, we
define the complexity class NP that aims to capture the set of problems whose solutions can be
efficiently verified. The famous P versus NP question asks whether or not the two are the same.
The resolution of this conjecture will be of great practical, scientific and philosophical interest; see
Section 2.7.

This chapter also introduces NP-completeness, an important class of computational problems
that are in P if and only if P = NP. Notions such as reductions and completeness encountered in
this study motivate many other definitions encountered later in the book.

Web draft 2007-01-08 22:00
Complexity Theory: A Modern Approach. © 2006 Sanjeev Arora and Boaz Barak. References and attributions are
still incomplete.

p2.1 (37)

DRAFT

p2.2 (38) 2.1. THE CLASS NP

2.1 The class NP

As mentioned above, the complexity class NP will serve as our formal model for the class of
problems having efficiently verifiable solutions: a decision problem / language is in NP if given an
input x, we can easily verify that x is a YES instance of the problem (or equivalently, x is in the
language) if we are given the polynomial-size solution for x, that certifies this fact. We will give
several equivalent definitions for NP. The first one is as follows:

Definition 2.1 (The class NP)
A language L ⊆ {0, 1}∗ is in NP if there exists a polynomial p : N → N and a
polynomial-time TM M such that for every x ∈ {0, 1}∗,

x ∈ L⇔ ∃u ∈ {0, 1}p(|x|) s.t. M(x, u) = 1

If x ∈ L and u ∈ {0, 1}p(|x|) satisfy M(x, u) = 1 then we call u a certificate1for x
(with respect to the language L and machine M).

Example 2.2
Here are a few examples for decision problems in NP:

Independent set: (See Example 1.1 in the previous chapter.) Given a graph G and a number k,
decide if there is a k-size independent subset of G’s vertices. The certificate for membership
is the list of k vertices forming an independent set.

Traveling salesperson: Given a set of n nodes,
(
n
2

)
numbers di,j denoting the distances between

all pairs of nodes, and a number k, decide if there is a closed circuit (i.e., a “salesperson
tour”) that visits every node exactly once and has total length at most k. The certificate is
the sequence of nodes in the tour.

Subset sum: Given a list of n numbers A1, . . . , An and a number T , decide if there is a subset of
the numbers that sums up to T . The certificate is the list of members in this subset.

Linear programming: Given a list of m linear inequalities with rational coefficients over n vari-
ables u1, . . . , un (a linear inequality has the form a1u1 + a2u2 + . . . + anun ≤ b for some
coefficients a1, . . . , an, b), decide if there is an assignment of rational numbers to the variables
u1, . . . , un that satisfies all the inequalities. The certificate is the assignment.

Integer programming: Given a list of m linear inequalities with rational coefficients over n
variables u1, . . . , um, find out if there is an assignment of integer numbers to u1, . . . , un

satisfying the inequalities. The certificate is the assignment.

1Some texts use the term witness instead of certificate.

Web draft 2007-01-08 22:00

DRAFT

2.1. THE CLASS NP p2.3 (39)

Graph isomorphism: Given two n× n adjacency matrices M1,M2, decide if M1 and M2 define
the same graph, up to renaming of vertices. The certificate is the permutation π : [n] → [n]
such that M2 is equal to M1 after reordering M1’s indices according to π.

Composite numbers: Given a number N decide if N is a composite (i.e., non-prime) number.
The certificate is the factorization of N .

Factoring: Given three numbers N,L,U decide if N has a factor M in the interval [L,U]. The
certificate is the factor M .

Connectivity: Given a graph G and two vertices s, t in G, decide if s is connected to t in G. The
certificate is the path from s to t.

2.1.1 Relation between NP and P

We have the following trivial relationships between NP and the classes P and DTIME(T (n))
defined in the previous chapter:

Claim 2.3
P ⊆ NP ⊆

⋃
c>1 DTIME(2nc

).

Proof: (P ⊆ NP): Suppose L ∈ P is decided in polynomial-time by a TM N . Then L ∈ NP
since we can take N as the machine M in Definition 2.1 and make p(x) the zero polynomial (in
other words, u is an empty string).

(NP ⊆
⋃

c>1 DTIME(2nc
)): If L ∈ NP and M,p() are as in Definition 2.1 then we can decide

L in time 2O(p(n)) by enumerating all possible u and using M to check whether u is a valid certificate
for the input x. The machine accepts iff such a u is ever found. Since p(n) = O(nc) for some c > 1
then this machine runs in 2O(nc) time. Thus the theorem is proven. �

At the moment, we do not know of any stronger relation between NP and deterministic time
classes than the trivial ones stated in Claim 2.3. The question whether or not P = NP is considered
the central open question of complexity theory, and is also an important question in mathematics
and science at large (see Section 2.7). Most researchers believe that P 6= NP since years of effort
has failed to yield efficient algorithms for certain NP languages.

Example 2.4
Here is the current knowledge regarding the NP decision problems mentioned in Example 2.2:
The Connectivity, Composite Numbers and Linear programming problems are known to be
in P. For connectivity this follows from the simple and well known breadth-first search algorithm
(see [?, ?]). The composite numbers problem was only recently shown to be in P by Agrawal, Kayal
and Saxena [?], who gave a beautiful algorithm to solve it. For the linear programming problem
this is again highly non-trivial, and follows from the Ellipsoid algorithm of Khachiyan [?] (there
are also faster algorithms, following Karmarkar’s interior point paradigm [?]).

Web draft 2007-01-08 22:00

DRAFT

p2.4 (40) 2.1. THE CLASS NP

All the rest of the problems are not known to have a polynomial-time algorithm, although we
have no proof that they are not in P. The Independent Set, Traveling Salesperson, Subset
Sum, and Integer Programming problems are known to be NP-complete, which, as we will see
in this chapter, implies that they are not in P unless P = NP. The Graph Isomorphism and
Factoring problems are not known to be either in P nor NP-complete.

2.1.2 Non-deterministic Turing machines.

The class NP can also be defined using a variant of Turing machines called non-deterministic
Turing machines (abbreviated NDTM). In fact, this was the original definition and the reason for
the name NP, which stands for non-deterministic polynomial-time. The only difference between an
NDTM and a standard TM is that an NDTM has two transition functions δ0 and δ1. In addition
the NDTM has a special state we denote by qaccept. When an NDTM M computes a function,
we envision that at each computational step M makes an arbitrary choice as to which of its two
transition functions to apply. We say that M outputs 1 on a given input x if there is some sequence
of these choices (which we call the non-deterministic choices of M) that would make M reach qaccept

on input x. Otherwise— if every sequence of choices makes M halt without reaching qaccept— then
we say that M(x) = 0. We say that M runs in T (n) time if for every input x ∈ {0, 1}∗ and every
sequence of non-deterministic choices, M reaches either the halting state or qaccept within T (|x|)
steps.

Definition 2.5
For every function T : N → N and L ⊆ {0, 1}∗, we say that L ∈ NTIME(T (n)) if there is a
constant c > 0 and a cT (n)-time NDTM M such that for every x ∈ {0, 1}∗, x ∈ L⇔M(x) = 1

The next theorem gives an alternative definition of NP, the one that appears in most texts.

Theorem 2.6
NP = ∪c∈NNTIME(nc)

Proof: The main idea is that the sequence of nondeterministic choices made by an accepting
computation of an NDTM can be viewed as a certificate that the input is in the language, and vice
versa.

Suppose p : N → N is a polynomial and L is decided by a NDTM N that runs in time p(n). For
every x ∈ L, there is a sequence of nondeterministic choices that makes N reach qaccept on input x.
We can use this sequence as a certificate for x. Notice, this certificate has length p(|x|) and can be
verified in polynomial time by a deterministic machine, which checks that N would have entered
qaccept after using these nondeterministic choices. Thus L ∈ NP according to Definition 2.1.

Conversely, if L ∈ NP according to Definition 2.1, then we describe a polynomial-time NDTM
N that decides L. On input x, it uses the ability to make non-deterministic choices to write down
a string u of length p(|x|). (Concretely, this can be done by having transition δ0 correspond to
writing a 0 on the tape and transition δ1 correspond to writing a 1.) Then it runs the deterministic

Web draft 2007-01-08 22:00

DRAFT

2.2. REDUCIBILITY AND NP-COMPLETENESS p2.5 (41)

verifier M of Definition 2.1 to verify that u is a valid certificate for x, and if so, enters qaccept.
Clearly, N enters qaccept on x if and only if a valid certificate exists for x. Since p(n) = O(nc) for
some c > 1, we conclude that L ∈ NTIME(nc). �

As is the case with deterministic TM’s, NDTM’s can be easily represented as strings and there
exists a universal non-deterministic Turing machine, see Exercise 1. (In fact, using non-determinism
we can even make the simulation by a universal TM slightly more efficient.)

2.2 Reducibility and NP-completeness

It turns out that the independent set problem is at least as hard as any other language in NP: if
it has a polynomial-time algorithm then so do all the problems in NP. This fascinating property
is called NP-hardness. Since most scientists conjecture that NP 6= P, the fact that a language is
NP-hard can be viewed as evidence that it cannot be decided in polynomial time.

How can we prove that a language B is at least as hard as some other language A? The crucial
tool we use is the notion of a reduction (see Figure 2.1):

Definition 2.7 (Reductions, NP-hardness and NP-completeness)
We say that a language A ⊆ {0, 1}∗ is polynomial-time Karp reducible to a language
B ⊆ {0, 1}∗ (sometimes shortened to just “polynomial-time reducible”2) denoted by
A ≤p B if there is a polynomial-time computable function f : {0, 1}∗ → {0, 1}∗ such
that for every x ∈ {0, 1}∗, x ∈ A if and only if f(x) ∈ B.
We say that B is NP-hard if A ≤p B for every A ∈ NP. We say that B is
NP-complete if B is NP-hard and B ∈ NP.

L

L

L’

L’

f(L)

f(L)

Algorithm for L

Algorithm for L’
f

Input: x f(x)
output:
1 iff f(x) in L’

Figure 2.1: A Karp reduction from L to L′ is a polynomial-time function f that maps strings in L to strings in L′

and strings in L = {0, 1}∗ \ L to strings in L′. It can be used to transform a polynomial-time TM M ′ that decides
L′ into a polynomial-time TM M for L by setting M(x) = M ′(f(x)).

Now we observe some properties of polynomial-time reductions. Part 1 of the following Theorem
shows that this relation is transitive. (Later we will define other notions of reduction, and all will

2Some texts call this notion “many-to-one reducibility” or “polynomial-time mapping reducibility”.

Web draft 2007-01-08 22:00

DRAFT

p2.6 (42) 2.3. THE COOK-LEVIN THEOREM: COMPUTATION IS LOCAL

satisfy transitivity.) Part 2 suggests the reason for the term NP-hard —namely, an NP-hard
languages is at least as hard as any other NP language. Part 3 similarly suggests the reason
for the term NP-complete: to study the P versus NP question it suffices to study whether any
NP-complete problem can be decided in polynomial time.

Theorem 2.8
1. (Transitivity) If A ≤p B and B ≤p C, then A ≤p C.

2. If language A is NP-hard and A ∈ P then P = NP.

3. If language A is NP-complete then A ∈ P if and only if P = NP.

Proof: The main observation is that if p, q are two functions that have polynomial growth then
their composition p(q(n)) also has polynomial growth. We prove part 1 and leave the others as
simple exercises.

If f1 is a polynomial-time reduction from A to B and f2 is a reduction from B to C then
the mapping x 7→ f2(f1(x)) is a polynomial-time reduction from A to C since f2(f1(x)) takes
polynomial time to compute given x and f2(f1(x)) ∈ C iff x ∈ A. �

Do NP-complete languages exist? It may not be clear that NP should possess a language that
is as hard as any other language in the class. However, this does turn out to be the case:

Theorem 2.9
The following language is NP-complete:

TMSAT = {〈α, x, 1n, 1t〉 : ∃u ∈ {0, 1}n s.t. Mα outputs 1 on input 〈x, u〉 within t steps}

where Mα denotes the TM represented by the string α.3

Once you internalize the definition of NP, the proof of Theorem 2.9 is straightforward and so
is left to the reader as Exercise 2. But TMSAT is not a very useful NP-complete problem since
its definition is intimately tied to the notion of the Turing machine, and hence the fact that it is
NP-complete does not provide much new insight.

2.3 The Cook-Levin Theorem: Computation is Local

Around 1971, Cook and Levin independently discovered the notion of NP-completeness and gave
examples of combinatorial NP-complete problems whose definition seems to have nothing to do
with Turing machines. Soon after, Karp showed that NP-completeness occurs widely and many
problems of practical interest are NP-complete. To date, thousands of computational problems in
a variety of disciplines have been found to be NP-complete.

3Recall that 1k denotes the string consisting of k 1’s. it is a common convention in complexity theory to provide
a polynomial TM with such an input to allow it to run in time polynomial in k.

Web draft 2007-01-08 22:00

DRAFT

2.3. THE COOK-LEVIN THEOREM: COMPUTATION IS LOCAL p2.7 (43)

2.3.1 Boolean formulae and the CNF form.

Some of the simplest examples of NP-complete problems come from propositional logic. A Boolean
formula over the variables u1, . . . , un consists of the variables and the logical operators AND (∧),
NOT (¬) and OR (∨); see Appendix A for their definitions. For example, (a∧ b)∨ (a∧ c)∨ (b∧ c)
is a Boolean formula that is True if and only if the majority of the variables a, b, c are True. If
ϕ is a Boolean formula over variables u1, . . . , un, and z ∈ {0, 1}n, then ϕ(z) denotes the value of
ϕ when the variables of ϕ are assigned the values z (where we identify 1 with True and 0 with
False). A formula ϕ is satisfiable if there there exists some assignment z such that ϕ(z) is True.
Otherwise, we say that ϕ is unsatisfiable.

A Boolean formula over variables u1, . . . , un is in CNF form (shorthand for Conjunctive Normal
Form) if it is an AND of OR’s of variables or their negations. For example, the following is a 3CNF
formula:

(u1 ∨ ū2 ∨ u3) ∧ (u2 ∨ ū3 ∨ u4) ∧ (ū1 ∨ u3 ∨ ū4) .

where ū denotes the negation of the variable u.
More generally, a CNF formula has the form

∧
i

∨
j

vij

 ,

where each vij is either a variable uk or to its negation ¬uk. The terms vij are called the literals
of the formula and the terms (∨jvij) are called its clauses. A kCNF is a CNF formula in which all
clauses contain at most k literals.

2.3.2 The Cook-Levin Theorem

The following theorem provides us with our first natural NP-complete problems:

Theorem 2.10 (Cook-Levin Theorem [?, ?])
Let SAT be the language of all satisfiable CNF formulae and 3SAT be the language
of all satisfiable 3CNF formulae. Then,

1. SAT is NP-complete.

2. 3SAT is NP-complete.

Remark 2.11
An alternative proof of the Cook-Levin theorem, using the notion of Boolean circuits, is described
in Section 6.7.

Both SAT and 3SAT are clearly in NP, since a satisfying assignment can serve as the certificate
that a formula is satisfiable. Thus we only need to prove that they are NP-hard. We do so by first

Web draft 2007-01-08 22:00

DRAFT

p2.8 (44) 2.3. THE COOK-LEVIN THEOREM: COMPUTATION IS LOCAL

proving that SAT is NP-hard and then showing that SAT is polynomial-time Karp reducible to
3SAT. This implies that 3SAT is NP-hard by the transitivity of polynomial-time reductions. Thus
the following lemma is the key to the proof.
Lemma 2.12
SAT is NP-hard.

Notice, to prove this we have to show how to reduce every NP language L to SAT, in other
words give a polynomial-time transformation that turns any x ∈ {0, 1}∗ into a CNF formula ϕx

such that x ∈ L iff ϕx is satisfiable. Since we know nothing about the language L except that it is
in NP, this reduction has to rely just upon the definition of computation, and express it in some
way using a Boolean formula.

2.3.3 Warmup: Expressiveness of boolean formulae

As a warmup for the proof of Lemma 2.12 we show how to express various conditions using CNF
formulae.

Example 2.13
The formula (a ∨ b) ∧ (a ∨ b) is in CNF form. It is satisfied by only those values of a, b that are
equal. Thus, the formula

(x1 ∨ y1) ∧ (x1 ∨ y1) ∧ · · · ∧ (xn ∨ yn) ∧ (xn ∨ yn)

is True if and only if the strings x, y ∈ {0, 1}n are equal to one another.
Thus, though = is not a standard boolean operator like ∨ or ∧, we will use it as a convenient

shorthand since the formula φ1 = φ2 is equivalent to (in other words, has the same satisfying
assignments as) (φ1 ∨ φ2) ∧ (φ1 ∨ φ2).

In fact, CNF formulae of sufficient size can express every Boolean condition, as shown by the
following simple claim: (this fact is sometimes known as universality of the operations AND, OR
and NOT)
Claim 2.14
For every Boolean function f : {0, 1}` → {0, 1} there is an `-variable CNF formula ϕ of size `2`

such that ϕ(u) = f(u) for every u ∈ {0, 1}`, where the size of a CNF formula is defined to be the
number of ∧/∨ symbols it contains.

Proof Sketch: For every v ∈ {0, 1}`, it is not hard to see that there exists a clause Cv such that
Cv(v) = 0 and Cv(u) = 1 for every u 6= v. For example, if v = 〈1, 1, 0, 1〉, the corresponding clause
is u1 ∨ u2 ∨ u3 ∨ u4.

We let ϕ be the AND of all the clauses Cv for v such that f(v) = 0 (note that ϕ is indeed of
size at most `2`). Then for every u such that f(u) = 0 it holds that Cu(u) = 0 and hence ϕ(u) is
also equal to 0. On the other hand, if f(u) = 1 then Cv(u) = 1 for every v such that f(v) = 0 and
hence ϕ(u) = 1. We get that for every u, ϕ(u) = f(u). �

In this chapter we will use Claim 2.14 only when the number of variables is some fixed constant.

Web draft 2007-01-08 22:00

DRAFT

2.3. THE COOK-LEVIN THEOREM: COMPUTATION IS LOCAL p2.9 (45)

2.3.4 Proof of Lemma 2.12

Let L be an NP language and letM be the polynomial time TM such that that for every x ∈ {0, 1}∗,
x ∈ L⇔M(x, u) = 1 for some u ∈ {0, 1}p(|x|), where p : N → N is some polynomial. We show L is
polynomial-time Karp reducible to SAT by describing a way to transform in polynomial-time every
string x ∈ {0, 1}∗ into a CNF formula ϕx such that x ∈ L iff ϕx is satisfiable.

How can we construct such a formula ϕx? By Claim 2.14, the function that maps u ∈ {0, 1}p(|x|)

to M(x, u) can be expressed as a CNF formula ψx (i.e., ψx(u) = M(x, u) for every u ∈ {0, 1}p(|x|)).
Thus a string u such that M(x, u) = 1 exists if and only if ψx is satisfiable. But this is not useful
for us, since the size of the formula ψx obtained from Claim 2.14 can be as large as p(|x|)2p(|x|). To
get a smaller formula we use the fact that M runs in polynomial time, and that each basic step of
a Turing machine is highly local (in the sense that it examines and changes only a few bits of the
machine’s tapes).

In the course of the proof we will make the following simplifying assumptions about the TM
M : (1) M only has two tapes: an input tape and a work/output tape and (2) M is an oblivious
TM in the sense that its head movement does not depend on the contents of its input tape. In
particular, this means that M ’s computation takes the same time for all inputs of size n and for
each time step i the location of M ’s heads at the ith step depends only on i and M ’s input length.

We can make these assumptions without loss of generality because for every T (n)-time TM
M there exists a two-tape oblivious TM M̃ computing the same function in O(T (n)2) time (see
Remark 1.10 and Exercise 8 of Chapter 1).4 Thus in particular, if L is in NP then there ex-
ists a two-tape oblivious polynomial-time TM M and a polynomial p such that x ∈ L ⇔ ∃u ∈
{0, 1}p(|x|) s.t. M(x, u) = 1.

The advantage of assuming that M is oblivious is that for any given input length, we can define
functions inputpos(i), prev(i) where inputpos(i) denotes the location of the input tape head at
the ith step and prev(i) denotes the last step before i that M visited the same location on its work
tape, see Figure 2.3.5 These values can be computed in polynomial time by simulating M on, say,
the all-zeroes input.

Denote by Q the set ofM ’s possible states and by Γ its alphabet. The snapshot ofM ’s execution
on some input y at a particular step i is the triple 〈a, b, q〉 ∈ Γ×Γ×Q such that a, b are the symbols
read by M ’s heads from the two tapes and q is the state M is in at the ith step (see Figure 2.2).
For every m ∈ N and y ∈ {0, 1}m, the snapshot of M ’s execution on input y at the ith step depends
on (1) its state in the i − 1st step and (2) the contents of the current cells of its input and work
tapes. We write this relation as

zi = F (zi−1, zprev(i), yinputpos(i)) ,

where inputpos(i) and prev(i) are as defined earlier, zi is the encoding of the ith snapshot as a
binary string of some length c, and F is some function (derived from M ’s transition function) that

4In fact, with some more effort we even simulate a non-oblivious T (n)-time TM by an oblivious TM running in
O(T (n) log T (n))-time, see Exercise 9 of Chapter 1. This oblivious machine may have more than two tapes, but the
proof below easily generalizes to this case.

5If i is the first step that M visits a certain location, then we define prev(i) = 1.

Web draft 2007-01-08 22:00

DRAFT

p2.10 (46) 2.3. THE COOK-LEVIN THEOREM: COMPUTATION IS LOCAL

Input
tape

Work/
output
tape

> 0 0 0 1 1 0 1 0 0 0 1 0 0 0 0

> 1 1 0 1 1 1 0 0 0 1

q7State register

read only head

read/write head

snapshot

0 1 q7
a b q

Figure 2.2: A snapshot of a TM contains the current state and symbols read by the TM at a particular step. If at
the ith step M reads the symbols 0, 1 from its tapes and is in the state q7 then the snapshot of M at the ith step is
〈0, 1, q7〉.

maps {0, 1}2c+1 to {0, 1}c. (Note that c is a constant depending only on M ’s state and alphabet
size, and independent of the input size.)

1 minputpos(i)

....

............
1 prev(i) i-1 i T

input:

snapshots:

Figure 2.3: The snapshot of M at the ith step depends on its previous state (contained in the snapshot at the
i − 1st step), and the symbols read from the input tape, which is in position inputpos(i), and from the work tape,
which was last written to in step prev(i).

Let n ∈ N and x ∈ {0, 1}n. We need to construct a CNF formula ϕx such that x ∈ L ⇔
ϕx ∈ SAT. Recall that x ∈ L if and only if there exists some u ∈ {0, 1}p(n) such that M(y) = 1
where y = x◦u (with ◦ denoting concatenation). Since the sequence of snapshots in M ’s execution
completely determines its outcome, this happens if and only if there exists a string y ∈ {0, 1}n+p(n)

and a sequence of strings z1, . . . , zT ∈ {0, 1}c (where T = T (n) is the number of steps M takes on
inputs of length n+ p(n)) satisfying the following four conditions:

1. The first n bits of y are equal to x.

2. The string z1 encodes the initial snapshot of M (i.e., the triple 〈B,�, qstart〉 where B is the
start symbol of the input tape, � is the blank symbol, and qstart is the initial state of the TM

Web draft 2007-01-08 22:00

DRAFT

2.3. THE COOK-LEVIN THEOREM: COMPUTATION IS LOCAL p2.11 (47)

M).

3. For every i ∈ {2, .., T}, zi = F (zi−1, zinputpos(i), zprev(i)).

4. The last string zT encodes a snapshot in which the machine halts and outputs 1.

The formula ϕx will take variables y ∈ {0, 1}n+p(n) and z ∈ {0, 1}cT and will verify that y, z
satisfy the AND of these four conditions. Clearly x ∈ L⇔ ϕx ∈ SAT and so all that remains is to
show that we can express ϕx as a polynomial-sized CNF formula.

Condition 1 can be expressed as a CNF formula of size 4n (see Example 2.13). Conditions 2
and 4 each depend on c variables and hence by Claim 2.14 can be expressed by CNF formulae of
size c2c. Condition 3, which is an AND of T conditions each depending on at most 3c+1 variables,
can be expressed as a CNF formula of size at most T (3c + 1)23c+1. Hence the AND of all these
conditions can be expressed as a CNF formula of size d(n+T) where d is some constant depending
only on M . Moreover, this CNF formula can be computed in time polynomial in the running time
of M . �

2.3.5 Reducing SAT to 3SAT.

Since both SAT and 3SAT are clearly in NP, Lemma 2.12 completes the proof that SAT is NP-
complete. Thus all that is left to prove Theorem 2.10 is the following lemma:

Lemma 2.15
SAT ≤p 3SAT.

Proof: We will map a CNF formula ϕ into a 3CNF formula ψ such that ψ is satisfiable if and only if
ϕ is. We demonstrate first the case that ϕ is a 4CNF. Let C be a clause of ϕ, say C = u1∨u2∨u3∨u4.
We add a new variable z to the ϕ and replace C with the pair of clauses C1 = u1 ∨ u2 ∨ z and
C2 = u3 ∨ u4 ∨ z. Clearly, if u1 ∨ u2 ∨ u3 ∨ u4 is true then there is an assignment to z that satisfies
both u1 ∨ u2 ∨ z and u3 ∨ u4 ∨ z and vice versa: if C is false then no matter what value we assign
to z either C1 or C2 will be false. The same idea can be applied to a general clause of size 4, and
in fact can be used to change every clause C of size k (for k > 3) into an equivalent pair of clauses
C1 of size k − 1 and C2 of size 3 that depend on the k variables of C and an additional auxiliary
variable z. Applying this transformation repeatedly yields a polynomial-time transformation of a
CNF formula ϕ into an equivalent 3CNF formula ψ. �

2.3.6 More thoughts on the Cook-Levin theorem

The Cook-Levin theorem is a good example of the power of abstraction. Even though the theorem
holds regardless of whether our computational model is the C programming language or the Turing
machine, it may have been considerably more difficult to discover in the former context.

Also, it is worth pointing out that the proof actually yields a result that is a bit stronger than
the theorem’s statement:

Web draft 2007-01-08 22:00

DRAFT

p2.12 (48) 2.4. THE WEB OF REDUCTIONS

1. If we use the efficient simulation of a standard TM by an oblivious TM (see Exercise 9,
Chapter 1) then for every x ∈ {0, 1}∗, the size of the formula ϕx (and the time to compute
it) is O(T log T), where T is the number of steps the machine M takes on input x (see
Exercise 10).

2. The reduction f from an NP-language L to SAT presented in Lemma 2.12 not only satisfied
that x ∈ L ⇔ f(x) ∈ SAT but actually the proof yields an efficient way to transform a
certificate for x to a satisfying assignment for f(x) and vice versa. We call a reduction with
this property a Levin reduction. One can also verify that the proof supplied a one-to-one and
onto map between the set of certificates for x and the set of satisfying assignments for f(x),
implying that they are of the same size. A reduction with this property is called parsimonious.
Most of the known NP-complete problems (including all the ones mentioned in this chapter)
have parsimonious Levin reductions from all the NP languages (see Exercise 11). As we will
see in this book, this fact is sometimes useful for certain applications.

Why 3SAT? The reader may wonder why is the fact that 3SAT is NP-complete so much more
interesting than the fact that, say, the language TMSAT of Theorem 2.9 is NP-complete. One
answer is that 3SAT is useful for proving the NP-completeness of other problems: it has very
minimal combinatorial structure and thus easy to use in reductions. Another answer has to do
with history: propositional logic has had a central role in mathematical logic —in fact it was
exclusively the language of classical logic (e.g. in ancient Greece). This historical resonance is one
reason why Cook and Levin were interested in 3SAT in the first place. A third answer has to do
with practical importance: it is a simple example of constraint satisfaction problems, which are
ubiquitous in many fields including artificial intelligence.

2.4 The web of reductions

Cook and Levin had to show how every NP language can be reduced to SAT. To prove the NP-
completeness of any other language L, we do not need to work as hard: it suffices to reduce SAT or
3SAT to L. Once we know that L is NP-complete we can show that an NP-language L′ is in fact
NP-complete by reducing L to L′. This approach has been used to build a “web of reductions”
and show that thousands of interesting languages are in fact NP-complete. We now show the
NP-completeness of a few problems. More examples appear in the exercises (see Figure 2.4). See
the classic book by Garey and Johnson [?] and the Internet site [?] for more.

Theorem 2.16 (Independent set is NP-complete)
Let INDSET = {〈G, k〉 : G has independent set of size k}. Then INDSET is NP-complete.

Proof: Since INDSET is clearly in NP, we only need to show that it is NP-hard, which we do by
reducing 3SAT to INDSET. Let ϕ be a 3CNF formula on n variables with m clauses. We define a
graph G of 7m vertices as follows: we associate a cluster of 7 vertices in G with each clause of ϕ.
The vertices in cluster associated with a clause C correspond to the 7 possible partial assignments to
the three variables C depends on (we call these partial assignments, since they only give values for
some of the variables). For example, if C is u2∨u5∨u7 then the 7 vertices in the cluster associated

Web draft 2007-01-08 22:00

DRAFT

2.4. THE WEB OF REDUCTIONS p2.13 (49)

∀L ∈ NP

SAT

Exactone3SAT

?
�������������9

dHAMPATH

HAMPATH

TSP HAMCYCLE

?

�
�	

HHHHHj

Theorem 2.18
?

Theorem 2.16Ex 17

Ex 17

Theorem 2.10 (Lemma 2.12)

������������9

XXXXXXXXXXXXXXXXXz
3SAT
ZZ~

?
SUBSETSUM

Ex 16
INDSET
�
�
�
�
�
�
��

CLIQUE

Ex 14

@
@
@
@
@
@
@R

?

VERTEXCOVER

Ex 15

MAXCUT

Ex 16

THEOREMS

Ex 6

Ex 18

QUADEQ

�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
���

Theorem 2.17
INTEGERPROG

Theorem 2.10 (Lemma 2.15)

Figure 2.4: Web of reductions between the NP-completeness problems described in this chapter
and the exercises. Thousands more are known.

Web draft 2007-01-08 22:00

DRAFT

p2.14 (50) 2.4. THE WEB OF REDUCTIONS

with C correspond to all partial assignments of the form u1 = a, u2 = b, u3 = c for a binary vector
〈a, b, c〉 6= 〈1, 1, 1〉. (If C depends on less than three variables then we repeat one of the partial
assignments and so some of the 7 vertices will correspond to the same assignment.) We put an
edge between two vertices of G if they correspond to inconsistent partial assignments. Two partial
assignments are consistent if they give the same value to all the variables they share. For example,
the assignment u1 = 1, u2 = 0, u3 = 0 is inconsistent with the assignment u3 = 1, u5 = 0, u7 = 1
because they share a variable (u3) to which they give a different value. In addition, we put edges
between every two vertices that are in the same cluster.

Clearly transforming ϕ into G can be done in polynomial time. We claim that ϕ is satisfiable if
and only if G has a clique of size m. Indeed, suppose that ϕ has a satisfying assignment u. Define
a set S of m vertices as follows: for every clause C of ϕ put in S the vertex in the cluster associated
with C that corresponds to the restriction of u to the variables C depends on. Because we only
choose vertices that correspond to restrictions of the assignment u, no two vertices of S correspond
to inconsistent assignments and hence S is an independent set of size m.

On the other hand, suppose that G has an independent set S of size m. We will use S to
construct a satisfying assignment u for ϕ. We define u as follows: for every i ∈ [n], if there is a
vertex in S whose partial assignment gives a value a to ui, then set ui = a; otherwise set ui = 0.
This is well defined because S is an independent set, and hence each variable ui can get at most
a single value by assignments corresponding to vertices in S. On the other hand, because we put
all the edges within each cluster, S can contain at most a single vertex in each cluster, and hence
there is an element of S in every one of the m clusters. Thus, by our definition of u, it satisfies all
of ϕ’s clauses. �

We see that, surprisingly, the answer to the famous NP vs. P question depends on the seemingly
mundane question of whether one can efficiently plan an optimal dinner party. Here are some more
NP-completeness results:

Theorem 2.17 (Integer programming is NP-complete)
We say that a set of linear inequalities with rational coefficients over variables u1, . . . , un is in
IPROG if there is an assignment of integer numbers in {0, 1, 2, . . .} to u1, . . . , un that satisfies it.
Then, IPROG is NP-complete.

Proof: IPROG is clearly in NP. To reduce SAT to IPROG note that every CNF formula can be
easily expressed as an integer program: first add the constraints 0 ≤ ui ≤ 1 for every i to ensure
that the only feasible assignments to the variables are 0 or 1, then express every clause as an
inequality. For example, the clause u1∨u2∨u3 can be expressed as u1 +(1−u2)+(1−u3) ≥ 1. �

Theorem 2.18 (Hamiltonian path is NP-complete)
Let dHAMPATH denote the set of all directed graphs that contain a path visiting all of their vertices
exactly once. Then dHAMPATH is NP-complete.

Proof: Again, dHAMPATH is clearly in NP. To show it’s NP-complete we show a way to map
every CNF formula ϕ into a graph G such that ϕ is satisfiable if and only if G has a Hamiltonian
path (i.e. path that visits all of G’s vertices exactly once).

Web draft 2007-01-08 22:00

DRAFT

2.4. THE WEB OF REDUCTIONS p2.15 (51)

......

m vertices corresponding to clauses c1 cm

start vertex

end vertex

..........

For every variable ui we have a “chain” of 6m vertices.

chain 1:

chain n:

c10 = u1 OR u2 OR u3

link in chain 1:

link in chain 2:

link in chain 3:

left-to-right traversal = TRUE, right-to-left = FALSE

vertex c10 can be visited if chain 1 is traversed left-to-right
or if chains 2 or 3 are traversed right-to-left

u v

chain 2:

Figure 2.5: Reducing SAT to dHAMPATH. A formula ϕ with n variables and m clauses is mapped to a graph G
that has m vertices corresponding to the clauses and n doubly linked chains, each of length 6m, corresponding to
the variables. Traversing a chain left to right corresponds to setting the variable to True, while traversing it right
to left corresponds to setting it to False. Note that in the figure every Hamiltonian path that takes the edge from
u to c10 must immediately take the edge from c10 to v, as otherwise it would get “stuck” the next time it visits v.

The reduction is described in Figure 2.5. The graph G has (1) m vertices for each of ϕ’s clauses
c1, . . . , cm, (2) a special starting vertex vstart and ending vertex vend and (3) n “chains” of 6m
vertices corresponding to the n variables of ϕ. A chain is a set of vertices v1, . . . , v6m such that for
every i ∈ [6m− 1], vi and vi+1 are connected by two edges in both directions.

We put edges from the starting vertex vstart to the two extreme points of the first chain. We
also put edges from the extreme points of the jth chain to the extreme points to the j + 1th chain
for every j ∈ [n− 1]. We put an edge from the extreme points of the nth chain to the ending vertex
vend.

In addition to these edges, for every clause C of ϕ, we put edges between the chains correspond-
ing to the variables appearing in C and the vertex vC corresponding to C in the following way: if
C contains the literal uj then we take two neighboring vertices vi, vi+1 in the jth chain and put an
edge from vi to C and from C to vi+1. If C contains the literal uj then we connect these edges in
the opposite direction (i.e., vi+1 to C and C to vi). When adding these edges, we never “reuse”
a link vi, vi+1 in a particular chain and always keep an unused link between every two used links.
We can do this since every chain has 6m vertices, which is more than sufficient for this.
(ϕ ∈ SAT ⇒ G ∈ dHAMPATH.) Suppose that ϕ has a satisfying assignment u1, . . . , un. We will
show a path that visits all the vertices of G. The path will start at vstart, travel through all the
chains in order, and end at vend. For starters, consider the path that travels the jth chain in left-
to-right order if uj = 1 and travels it in right-to-left order if uj = 0. This path visits all the vertices
except for those corresponding to clauses. Yet, if u is a satisfying assignment then the path can be
easily modified to visit all the vertices corresponding to clauses: for each clause C there is at least
one literal that is true, and we can use one link on the chain corresponding to that literal to “skip”
to the vertex vC and continue on as before.

Web draft 2007-01-08 22:00

DRAFT

p2.16 (52) 2.4. THE WEB OF REDUCTIONS

(G ∈ dHAMPATH ⇒ ϕ ∈ SAT.) Suppose that G has an Hamiltonian path P . We first note that
the path P must start in vstart (as it has no incoming edges) and end at vend (as it has no outgoing
edges). Furthermore, we claim that P needs to traverse all the chains in order, and within each
chain traverse it either in left-to-right order or right-to-left order. This would be immediate if the
path did not use the edges from a chain to the vertices corresponding to clauses. The claim holds
because if a Hamiltonian path takes the edge u→ w, where u is on a chain and w corresponds to
a clause, then it must at the next step take the edge w → v where v is the vertex adjacent to u in
the link. Otherwise, the path will get stuck the next time it visits v (see Figure 2.1). Now, define
an assignment u1, . . . , un to ϕ as follows: uj = 1 if P traverses the jth chain in left-to-right order,
and uj = 0 otherwise. It is not hard to see that because P visits all the vertices corresponding to
clauses, u1, . . . , un is a satisfying assignment for ϕ. �

In praise of reductions

Though originally invented as part of the theory of NP-completeness, the polynomial-time re-
duction (together with its first cousin, the randomized polynomial-time reduction defined in Sec-
tion 7.9) has led to a rich understanding of complexity above and beyond NP-completeness. Much
of complexity theory and cryptography today (thus, many chapters of this book) consists of using
reductions to make connections between disparate complexity theoretic conjectures. Why do com-
plexity theorists excel at reductions but not at actually proving lower bounds on Turing machines?
A possible explanation is that humans have evolved to excel at problem solving, and hence are
more adept at algorithms (after all, a reduction is merely an algorithm to transform one problem
into another) than at proving lower bounds on Turing machines.

Coping with NP hardness.

NP-complete problems turn up in great many applications, from flight scheduling to genome se-
quencing. What do you do if the problem you need to solve turns out to be NP-complete? On the
outset, the situation looks bleak: if P 6= NP then there simply does not exist an efficient algorithm
to solve such a problem. However, there may still be some hope: NP completeness only means
that (assuming P 6= NP) the problem does not have an algorithm that solves it exactly on every
input. But for many applications, an approximate solution on some of the inputs might be good
enough.

A case in point is the traveling salesperson problem (TSP), of computing, given a list of pairwise
distances between n cities, the shortest route that travels through all of them. Assume that you
are indeed in charge of coming up with travel plans for traveling salespersons that need to visit
various cities around your country. Does the fact that TSP is NP-complete means that you are
bound to do a hopelessly suboptimal job? This does not have to be the case.

First note that you do not need an algorithm that solves the problem on all possible lists of
pairwise distances. We might model the inputs that actually arise in this case as follows: the n
cities are points on a plane, and the distance between a pair of cities is the distance between the
corresponding points (we are neglecting here the difference between travel distance and direct/arial
distance). It is an easy exercise to verify that not all possible lists of pairwise distances can be

Web draft 2007-01-08 22:00

DRAFT

2.5. DECISION VERSUS SEARCH p2.17 (53)

generated in such a way. We call those that do Euclidean distances. Another observation is that
computing the exactly optimal travel plan may not be so crucial. If you could always come up with
a travel plan that is at most 1% longer than the optimal, this should be good enough.

It turns out that neither of these observations on its own is sufficient to make the problem
tractable. The TSP problem is still NP complete even for Euclidean distances. Also if P 6=
NP then TSP is hard to approximate within any constant factor. However, combining the two
observations together actually helps: for every ε there is a poly(n(log n)O(1/ε))-time algorithm that
given Euclidean distances between n cities comes up with a tour that is at most a factor of (1 + ε)
worse than the optimal tour [?].

We see that discovering the problem you encounter is NP-complete should not be cause for
immediate despair. Rather you should view this as indication that a more careful modeling of
the problem is needed, letting the literature on complexity and algorithms guide you as to what
features might make the problem more tractable. Alternatives to worst-case exact computation
are explored in Chapters 15 and 18, that investigate average-case complexity and approximation
algorithms respectively.

2.5 Decision versus search

We have chosen to define the notion of NP using Yes/No problems (“Is the given formula sat-
isfiable?”) as opposed to search problems (“Find a satisfying assignment to this formula if one
exists”). Clearly, the search problem is harder than the corresponding decision problem, and so
if P 6= NP then neither one can be solved for an NP-complete problem. However, it turns out
that for NP-complete problems they are equivalent in the sense that if the decision problem can
be solved (and hence P = NP) then the search version of any NP problem can also be solved in
polynomial time.

Theorem 2.19
Suppose that P = NP. Then, for every NP language L there exists a polynomial-time TM B that
on input x ∈ L outputs a certificate for x.

That is, if, as per Definition 2.1, x ∈ L iff ∃u ∈ {0, 1}p(|x|) s.t. M(x, u) = 1 where p is some
polynomial and M is a polynomial-time TM, then on input x ∈ L, B(x) will be a string u ∈
{0, 1}p(|x|) satisfying M(x,B(x)) = 1.

Proof: We start by showing the theorem for the case of SAT. In particular we show that given
an algorithm A that decides SAT, we can come up with an algorithm B that on input a satisfiable
CNF formula ϕ with n variables, finds a satisfying assignment for ϕ using 2n + 1 calls to A and
some additional polynomial-time computation.

The algorithm B works as follows: we first use A to check that the input formula ϕ is satisfiable.
If so, we substitute x1 = 0 and x1 = 1 in ϕ (this transformation, that simplifies and shortens the
formula a little, leaving a formula with n− 1 variables, can certainly be done in polynomial time)
and then use A to decide which of the two is satisfiable (it is possible that both are). Say the first is
satisfiable. Then we fix x1 = 0 from now on and continue with the simplified formula. Continuing
this way we end up fixing all n variables while ensuring that each intermediate formula is satisfiable.
Thus the final assignment to the variables satisfies ϕ.

Web draft 2007-01-08 22:00

DRAFT

p2.18 (54) 2.6. CONP, EXP AND NEXP

To solve the search problem for an arbitrary NP-language L, we use the fact that the reduction
of Theorem 2.10 from L to SAT is actually a Levin reduction. This means that we have a polynomial-
time computable function f such that not only x ∈ L ⇔ f(x) ∈ SAT but actually we can map a
satisfying assignment of f(x) into a certificate for x. Therefore, we can use the algorithm above to
come up with an assignment for f(x) and then map it back into a certificate for x. �

Remark 2.20
The proof above shows that SAT is downward self-reducible, which means that given an algorithm
that solves SAT on inputs of length smaller than n we can solve SAT on inputs of length n. Using
the Cook-Levin reduction, one can show that all NP-complete problems have a similar property,
though we do not make this formal.

2.6 coNP, EXP and NEXP

Now we define some related complexity classes that are very relevant to the study of the P versus
NP question.

2.6.1 coNP

If L ⊆ {0, 1}∗ is a language, then we denote by L the complement of L. That is, L = {0, 1}∗ \ L.
We make the following definition:

Definition 2.21
coNP =

{
L : L ∈ P

}
.

It is important to note that coNP is not the complement of the class NP. In fact, they have
a non-empty intersection, since every language in P is in NP ∩ coNP (see Exercise 19). The
following is an example of a coNP language: SAT = {ϕ : ϕ is not satisfiable} . Students sometimes
mistakenly convince themselves that SAT is in NP. They have the following polynomial time
NDTM in mind: on input ϕ, the machine guesses an assignment. If this assignment does not
satisfy ϕ then it accepts (i.e., goes into qaccept and halts) and if it does satisfy ϕ then the machine
halts without accepting. This NDTM does not do the job: indeed it accepts every unsatisfiable
ϕ but in addition it also accepts many satisfiable formulae (i.e., every formula that has a single
unsatisfying assignment). That is why pedagogically we prefer the following definition of coNP
(which is easily shown to be equivalent to the first, see Exercise 20):

Definition 2.22 (coNP, alternative definition)
For every L ⊆ {0, 1}∗, we say that L ∈ coNP if there exists a polynomial p : N → N and a
polynomial-time TM M such that for every x ∈ {0, 1}∗,

x ∈ L⇔ ∀u ∈ {0, 1}p(|x|) s.t. M(x, u) = 1

The key fact to note is the use of “∀” in this definition where Definition 2.1 used ∃.
We can define coNP-completeness in analogy to NP-completeness: a language is coNP-

complete if it is in coNP and every coNP language is polynomial-time Karp reducible to it.

Web draft 2007-01-08 22:00

DRAFT

2.6. CONP, EXP AND NEXP p2.19 (55)

Example 2.23
In classical logic, tautologies are true statements. The following language is coNP-complete:

TAUTOLOGY = {ϕ : ϕ is a Boolean formula that is satisfied by every assignment} .

It is clearly in coNP by Definition 2.22 and so all we have to show is that for every L ∈ coNP,
L ≤p TAUTOLOGY. But this is easy: just modify the Cook-Levin reduction from L (which is in
NP) to SAT. For every input x ∈ {0, 1}∗ that reduction produces a formula ϕx that is satisfiable
iff x ∈ L. Now consider the formula ¬ϕx. It is in TAUTOLOGY iff x ∈ L, and this completes the
description of the reduction.

It is a simple exercise to check that if P = NP then NP = coNP = P. Put in the contraposi-
tive, if we can show that NP 6= coNP then we have shown P 6= NP. Most researchers believe that
NP 6= coNP. The intuition is almost as strong as for the P versus NP question: it seems hard to
believe that there is any short certificate for certifying that a given formula is a TAUTOLOGY, in
other words, to certify that every assignment satisfies the formula.

2.6.2 EXP and NEXP

The following two classes are exponential time analogues of P and NP.

Definition 2.24
EXP = ∪c≥0DTIME(2nc

).
NEXP = ∪c≥0NTIME(2nc

).

Because every problem in NP can be solved in exponential time by a brute force search for
the certificate, P ⊆ NP ⊆ EXP ⊆ NEXP. Is there any point to studying classes involving
exponential running times? The following simple result —providing merely a glimpse of the rich
web of relations we will be establishing between disparate complexity questions— may be a partial
answer.
Theorem 2.25
If EXP 6= NEXP then P 6= NP.

Proof: We prove the contrapositive: assuming P = NP we show EXP = NEXP. Suppose
L ∈ NTIME(2nc

) and NDTM M decides it. We claim that then the language

Lpad =
{
〈x, 12|x|c 〉 : x ∈ L

}
(1)

is in NP. Here is an NDTM for Lpad: given y, first check if there is a string z such that y = 〈z, 12|z|c 〉.
If not, output REJECT. If y is of this form, then run M on z for 2|z|

c

steps and output its answer.
Clearly, the running time is polynomial in |y|, and hence Lpad ∈ NP. Hence if P = NP then Lpad

is in P. But if Lpad is in P then L is in EXP: to determine whether an input x is in L, we just
pad the input and decide whether it is in Lpad using the polynomial-time machine for Lpad. �

Web draft 2007-01-08 22:00

DRAFT

p2.20 (56) 2.7. MORE THOUGHTS ABOUT P, NP, AND ALL THAT

Remark 2.26
The padding technique used in this proof, whereby we transform a language by “padding” every
string in a language with a string of (useless) symbols, is also used in several other results in
complexity theory. In many settings it can be used to show that equalities between complexity
classes “scale up”; that is, if two different type of resources solve the same problems within bound
T (n) then this also holds for functions T ′ larger than T . Viewed contrapositively, padding can
be used to show that inequalities between complexity classes involving resurce bound T ′(n) “scale
down” to resource bound T (n).

Like P and NP, most of the complexity classes studied later are also contained in both EXP
and NEXP.

2.7 More thoughts about P, NP, and all that

2.7.1 The philosophical importance of NP

At a totally abstract level, the P versus NP question may be viewed as a question about the
power of nondeterminism in the Turing machine model. (Similar questions have been completely
answered for simpler models such as finite automata.)

However, the certificate definition of NP also suggests that the P versus NP question captures
a widespread phenomenon of some philosophical importance (and a source of great frustration to
students): recognizing the correctness of an answer is often easier than coming up with the answer.
To give other analogies from life: appreciating a Beethoven sonata is far easier than composing
the sonata; verifying the solidity of a design for a suspension bridge is easier (to a civil engineer
anyway!) than coming up with a good design; verifying the proof of a theorem is easier than coming
up with a proof itself (a fact referred to in Gödel’s letter mentioned at the start of the chapter),
and so forth. In such cases, coming up with the right answer seems to involve exhaustive search
over an exponentially large set. The P versus NP question asks whether exhaustive search can be
avoided in general. It seems obvious to most people —and the basis of many false proofs proposed
by amateurs— that exhaustive search cannot be avoided: checking that a given salesperson tour
(provided by somebody else) has length at most k ought to be a lot easier than coming up with
such a tour by oneself. Unfortunately, turning this intuition into a proof has proved difficult.

2.7.2 NP and mathematical proofs

By definition, NP is the set of languages where membership has a short certificate. This is remi-
niscent of another familiar notion, that of a mathematical proof. As noticed in the past century, in
principle all of mathematics can be axiomatized, so that proofs are merely formal manipulations of
axioms. Thus the correctness of a proof is rather easy to verify —just check that each line follows
from the previous lines by applying the axioms. In fact, for most known axiomatic systems (e.g.,
Peano arithmetic or Zermelo-Fraenkel Set Theory) this verification runs in time polynomial in the
length of the proof. Thus the following problem is in NP for any of the usual axiomatic systems
A:

theorems = {(ϕ, 1n) : ϕ has a formal proof of length ≤ n in system A} .

Web draft 2007-01-08 22:00

DRAFT

2.7. MORE THOUGHTS ABOUT P, NP, AND ALL THAT p2.21 (57)

In fact, the exercises ask you to prove that this problem is NP-complete. Hence the P versus
NP question is a rephrasing of Gödel’s question (see quote at the beginning of the chapter), which
asks whether or not there is a algorithm that finds mathematical proofs in time polynomial in the
length of the proof.

Of course, all our students know in their guts that finding correct proofs is far harder than
verifying their correctness. So presumably, they believe at an intuitive level that P 6= NP.

2.7.3 What if P = NP?

If P = NP —specifically, if an NP-complete problem like 3SAT had a very efficient algorithm
running in say O(n2) time— then the world would be mostly a Utopia. Mathematicians could
be replaced by efficient theorem-discovering programs (a fact pointed out in Kurt Gödel’s 1956
letter and discovered three decades later). In general for every search problem whose answer can be
efficiently verified (or has a short certificate of correctness), we will be able to find the correct answer
or the short certificate in polynomial time. AI software would be perfect since we could easily do
exhaustive searches in a large tree of possibilities. Inventors and engineers would be greatly aided
by software packages that can design the perfect part or gizmo for the job at hand. VLSI designers
will be able to whip up optimum circuits, with minimum power requirements. Whenever a scientist
has some experimental data, she would be able to automatically obtain the simplest theory (under
any reasonable measure of simplicity we choose) that best explains these measurements; by the
principle of Occam’s Razor the simplest explanation is likely to be the right one. Of course, in
some cases it took scientists centuries to come up with the simplest theories explaining the known
data. This approach can be used to solve also non-scientific problems: one could find the simplest
theory that explains, say, the list of books from the New York Times’ bestseller list. (NB: All these
applications will be a consequence of our study of the Polynomial Hierarchy in Chapter 5.)

Somewhat intriguingly, this Utopia would have no need for randomness. As we will later see, if
P = NP then randomized algorithms would buy essentially no efficiency gains over deterministic
algorithms; see Chapter 7. (Philosophers should ponder this one.)

This Utopia would also come at one price: there would be no privacy in the digital domain.
Any encryption scheme would have a trivial decoding algorithm. There would be no digital cash,
no SSL, RSA or PGP (see Chapter 10). We would just have to learn to get along better without
these, folks.

This utopian world may seem ridiculous, but the fact that we can’t rule it out shows how little
we know about computation. Taking the half-full cup point of view, it shows how many wonderful
things are still waiting to be discovered.

2.7.4 What if NP = coNP?

If NP = coNP, the consequences still seem dramatic. Mostly, they have to do with existence of
short certificates for statements that do not seem to have any. To give an example, remember the
NP-complete problem of finding whether or not a set of multivariate polynomials has a common

Web draft 2007-01-08 22:00

DRAFT

p2.22 (58) 2.7. MORE THOUGHTS ABOUT P, NP, AND ALL THAT

root, in other words, deciding whether a system of equations of the following type has a solution:

f1(x1, . . . , xn) = 0
f2(x1, . . . , xn) = 0

...
fm(x1, . . . , xn) = 0

where each fi is a quadratic polynomial.
If a solution exists, then that solution serves as a certificate to this effect (of course, we have to

also show that the solution can be described using a polynomial number of bits, which we omit).
The problem of deciding that the system does not have a solution is of course in coNP. Can we
give a certificate to the effect that the system does not have a solution? Hilbert’s Nullstellensatz
Theorem seems to do that: it says that the system is infeasible iff there is a sequence of polynomials
g1, g2, . . . , gm such that

∑
i figi = 1, where 1 on the right hand side denotes the constant polynomial

1.
What is happening? Does the Nullstellensatz prove coNP = NP? No, because the degrees of

the gi’s —and hence the number of bits used to represent them— could be exponential in n,m.
(And it is simple to construct fi’s for which this is necessary.)

However, if NP = coNP then there would be some other notion of a short certificate to the
effect that the system is infeasible. The effect of such a result on mathematics would probably be
even greater than the effect of Hilbert’s Nullstellensatz. Of course, one can replace Nullstellensatz
with any other coNP problem in the above discussion.

What have we learned?

• The class NP consists of all the languages for which membership can be cer-
tified to a polynomial-time algorithm. It contains many important problems
not known to be in P. NP can also be defined using non-deterministic Turing
machines.

• NP-complete problems are the hardest problems in NP, in the sense that
they have a polynomial-time algorithm if and only if P =NP. Many natural
problems that seemingly have nothing to do with Turing machines turn out
to be NP-complete. One such example is the language 3SAT of satisfiable
Boolean formulae in 3CNF form.

• If P = NP then for every search problem for which one can efficiently verify
a given solution, one can also efficiently find such a solution from scratch.

Chapter notes and history

In the 1950’s, Soviet scientists were aware of the undesirability of using exhaustive or brute force
search, which they called perebor, for combinatorial problems, and asked the question of whether

Web draft 2007-01-08 22:00

DRAFT

2.7. MORE THOUGHTS ABOUT P, NP, AND ALL THAT p2.23 (59)

certain problems inherently require such search (see [?]). In the west the first published description
of this issue is by Edmonds [?], in the paper quoted in the previous chapter. However, on both sides
of the iron curtain it took some time to realize the right way to formulate the problem and to arrive
at the modern definition of the classes NP and P. Amazingly, in his 1956 letter to von Neumann
we quoted above, Gödel essentially asks the question of P vs. NP, although there is no hint that
he realized that one of the particular problems he mentions is NP-complete. Unfortunately, von
Neumann was very sick at the time, and as far as we know, no further research was done by either
on them on this problem, and the letter was only discovered in the 1980’s.

In 1971 Cook published his seminal paper defining the notion of NP-completeness and showing
that SAT is NP complete [?]. Soon afterwards, Karp [?] showed that 21 important problems are in
fact NP-complete, generating tremendous interest in this notion. Meanwhile in the USSR Levin
independently defined NP-completeness (although he focused on search problems) and showed that
a variant of SAT is NP-complete. (Levin’s paper [?] was published in 1973, but he had been giving
talks on his results since 1971, also in those days there was essentially zero communication between
eastern and western scientists.) See Sipser’s survey [?] for more on the history of P and NP and
a full translation of Gödel’s remarkable letter.

The “TSP book” by Lawler et al. [?] also has a similar chapter, and it traces interest in the
Traveling Salesman Problem back to the 19th century. Furthermore, a recently discovered letter by
Gauss to Schumacher shows that Gauss was thinking about methods to solve the famous Euclidean
Steiner Tree problem —today known to be NP-hard— in the early 19th century.

As mentioned above, the book by Garey and Johnson [?] and the web site [?] contain many
more examples of NP complete problem. Also, Aaronson [?] surveys various attempts to solve NP
complete problems via “non-traditional” computing devices.

Even if NP 6= P, this does not necessarily mean that all of the utopian applications mentioned
in Section 2.7.3 are gone. It may be that, say, 3SAT is hard to solve in the worst case on every input
but actually very easy on the average, See Chapter 15 for a more detailed study of average-case
complexity. Also, Impagliazzo [?] has an excellent survey on this topic.

Exercises

§1 Prove the existence of a non-deterministic Universal TM (analogously to the deterministic
universal TM of Theorem 1.13). That is, prove that there exists a representation scheme of
NDTMs, and an NDTM NU such that for every string α, and input x, NU(x, α) = Mα(x).

(a) Prove that there exists such a universal NDTM NU such that if Mα halts on x within
T steps, then NU halts on x, α within CT log T steps (where C is a constant depending
only on the machine represented by α).

(b) Prove that there is such a universal NDTM that runs on these inputs for at most Ct
steps.

Web draft 2007-01-08 22:00

DRAFT

p2.24 (60) 2.7. MORE THOUGHTS ABOUT P, NP, AND ALL THAT

Hint:AsimulationinO(|α|tlogt)timecanbeobtainedbya
straightforwardadaptationoftheproofofTheorem1.13.Todoa
moreefficientsimulation,themainideaistofirstrunasimulation
ofMwithoutactuallyreadingthecontentsoftheworktapes,but
rathersimplynon-deterministicallyguessingthesecontents,and
writingthoseguessesdown.Then,goovertapebytapeandverify
thatallguesseswereconsistent.

§2 Prove Theorem 2.

§3 Let HALT be the Halting language defined in Theorem 1.17. Show that HALT is NP-hard.
Is it NP-complete?

§4 We have defined a relation ≤p among languages. We noted that it is reflexive (that is, A ≤p A
for all languages A) and transitive (that is, if A ≤p B and B ≤p C then A ≤p C). Show that
it is not commutative, namely, A ≤p B need not imply B ≤p A.

§5 Suppose L1, L2 ∈ NP. Then is L1 ∪ L2 in NP? What about L1 ∩ L2?

§6 Mathematics can be axiomatized using for example the Zermelo Frankel system, which has a
finite description. Argue at a high level that the following language is NP-complete.

{〈ϕ, 1n〉 : math statement ϕ has a proof of size at most n in the ZF system} .
Hint:WhyisthislanguageinNP?Isbooleansatisfiabilitya
mathmaticalstatement?

The question of whether this language is in P is essentially the question asked by Gödel in
the chapter’s initial quote.

§7 Show that NP = coNP iff 3SAT and TAUTOLOGY are polynomial-time reducible to one
another.

§8 Can you give a definition of NEXP without using NDTMs, analogous to the definition of
NP in Definition 2.1? Why or why not?

§9 We say that a language is NEXP-complete if it is in NEXP and every language in NEXP
is polynomial-time reducible to it. Describe a NEXP-complete language. Prove that if this
problem is in EXP then NEXP = EXP.

§10 Show that for every time constructible T : N → N, if L ∈ NTIME(T (n)) then we can give a
polynomial-time Karp reduction from L to 3SAT that transforms instances of size n into 3CNF
formulae of size O(T (n) log T (n)). Can you make this reduction also run in O(T (n) log T (n))?

§11 Recall that a reduction f from an NP-language L to an NP-languages L′ is parsimonious if
the number of certificates of f is equal to the number of certificates of f(x).

(a) Prove that the reduction from every NP-language L to SAT presented in the proof of
Lemma 2.12 is parsimonious.

Web draft 2007-01-08 22:00

DRAFT

2.7. MORE THOUGHTS ABOUT P, NP, AND ALL THAT p2.25 (61)

(b) Show a parsimonious reduction from SAT to 3SAT.

§12 The notion of polynomial-time reducibility used in Cook’s paper was somewhat different: a
language A is polynomial-time Cook reducible to a language B if there is a polynomial time
TM M that, given an oracle for deciding B, can decide A. (An oracle for B is a magical extra
tape given to M , such that whenever M writes a string on this tape and goes into a special
“invocation” state, then the string —in a single step!—gets overwritten by 1 or 0 depending
upon whether the string is or is not in B, see Section ??)

Show that the notion of cook reducibility is transitive and that 3SAT is Cook-reducible to
TAUTOLOGY.

§13 (Berman’s Theorem 1978) A language is called unary if every string in it is of the form 1i

(the string of i ones) for some i > 0. Show that if a unary language is NP-complete then
P = NP. (See Exercise 6 of Chapter 6 for a strengthening of this result.)

Hint:Ifthereisan
c

timereductionfrom3SATtoaunarylan-
guageL,thenthisreductioncanonlymapsizeninstancesof3SAT

tosomestringoftheform1
i
wherei≤n

c
.Usethisobservationto

obtainapolynomial-timealgorithmforSATusingthedownward
selfreducibilityargumentofTheorem2.19.

§14 In the CLIQUE problem we are given an undirected graph G and an integer K and have to
decide whether there is a subset S of at least K vertices such that every two distinct vertices
u, v ∈ S have an edge between them (such a subset is called a clique). In the VERTEX COVER
problem we are given an undirected graph G and an integer K and have to decide whether
there is a subset S of at most K vertices such that for every edge {i, j} of G, at least one of
i or j is in S. Prove that both these problems are NP-complete.

Hint:reducefromINDSET.

§15 In the MAX CUT problem we are given an undirected graph G and an integer K and have to
decide whether there is a subset of vertices S such that there are at least K edges that have
one endpoint in S and one endpoint in S. Prove that this problem is NP-complete.

§16 In the Exactly One 3SAT problem, we are given a 3CNF formula ϕ and need to decide if
there exists a satisfying assignment u for ϕ such that every clause of ϕ has exactly one True
literal. In the SUBSET SUM problem we are given a list of n numbers A1, . . . , An and a
number T and need to decide whether there exists a subset S ⊆ [n] such that

∑
i∈S Ai = T

(the problem size is the sum of all the bit representations of all numbers). Prove that both
Exactly One3SAT and SUBSET SUM are NP-complete.

Web draft 2007-01-08 22:00

DRAFT

p2.26 (62) 2.7. MORE THOUGHTS ABOUT P, NP, AND ALL THAT

Hint:ForExactlyOne3SATreplaceeachoccurrenceofaliteral
viinaclauseCbyanewvariablezi,Candclausesandauxiliary
variablesensuringthatifviisTruethenzi,Cisallowedtobeeither
TrueorFalsebutifviisfalsethenzi,CmustbeFalse.The
approachforthereductionofExactlyOne3SATtoSUBSETSUM

isthatgivenaformulaϕ,wemapittoaSUBSETSUMinstanceby
mappingeachpossibleliteraluitothenumber∑j∈Si(2n)

j
where

Siisthesetofclausesthattheliteraluisatisfies,andsettingthe
targetTtobe∑m

j=1(2n)
j
.Anadditionaltrickisrequiredtoensure

thatthesolutiontothesubsetsuminstancewillnotincludetwo
literalsthatcorrespondtoavariableanditsnegation.

§17 Prove that the language HAMPATH of undirected graphs with Hamiltonian paths is NP-
complete. Prove that the language TSP described in Example 2.2 is NP-complete. Prove
that the language HAMCYCLE of undirected graphs that contain Hamiltonian cycle (a simple
cycle involving all the vertices) is NP-complete.

§18 Let quadeq be the language of all satisfiable sets of quadratic equations over 0/1 variables
(a quadratic equations over u1, . . . , un has the form form

∑
ai,j

uiuj = b), where addition is
modulo 2. Show that quadeq is NP-complete.

Hint:ReducefromSAT
§19 Prove that P ⊆ NP ∩ coNP.

§20 Prove that the Definitions 2.21 and 2.22 do indeed define the same class coNP.

§21 Suppose L1, L2 ∈ NP∩ coNP. Then show that L1⊕L2 is in NP∩ coNP, where L1⊕L2 =
{x : x is in exactly one of L1, L2}.

§22 Define the language UNARY SUBSET SUM to be the variant of the SUBSET SUM problem of
Exercise 16 where all numbers are represented by the unary representation (i.e., the number
k is represented as 1k). Show that UNARY SUBSET SUM is in P.

Hint:Startwithanexponential-timerecursivealgorithmforSUB-

SETSUM,andshowthatinthiscaseyoucanmakeitintoa
polynomial-timealgorithmbystoringpreviouslycomputedvalues
inatable.

§23 Prove that if every unary NP-language is in P then EXP = NEXP. (A language L is unary
if it is a subset of {1}∗, see Exercise 13.)

Web draft 2007-01-08 22:00

	NP and NP completeness
	The class NP
	Relation between NP and P
	Non-deterministic Turing machines.

	Reducibility and NP-completeness
	The Cook-Levin Theorem: Computation is Local
	Boolean formulae and the CNF form.
	The Cook-Levin Theorem
	Warmup: Expressiveness of boolean formulae
	Proof of Lemma 2.12
	Reducing SAT to 3SAT.
	More thoughts on the Cook-Levin theorem

	The web of reductions
	In praise of reductions
	Coping with NP hardness.

	Decision versus search
	coNP, EXP and NEXP
	coNP
	EXP and NEXP

	More thoughts about P, NP, and all that
	The philosophical importance of NP
	NP and mathematical proofs
	What if P =NP?
	What if NP =coNP?

	Chapter notes and history
	Exercises

