
i

Computational Complexity:
A Modern Approach

Sanjeev Arora and Boaz Barak
Princeton University

http://www.cs.princeton.edu/theory/complexity/

complexitybook@gmail.com

Not to be reproduced or distributed without the authors’ permission

ii

Chapter 10

Quantum Computation

“Turning to quantum mechanics.... secret, secret, close the doors! we always
have had a great deal of difficulty in understanding the world view that quantum
mechanics represents ... It has not yet become obvious to me that there’s no
real problem. I cannot define the real problem, therefore I suspect there’s no
real problem, but I’m not sure there’s no real problem. So that’s why I like to
investigate things.”
Richard Feynman, 1964

“The only difference between a probabilistic classical world and the equations
of the quantum world is that somehow or other it appears as if the probabilities
would have to go negative..”
Richard Feynman, in “Simulating physics with computers,” 1982

Quantum computing is a new computational model that may be physically realizable and
may provide an exponential advantage over “classical” computational models such as prob-
abilistic and deterministic Turing machines. In this chapter we survey the basic principles
of quantum computation and some of the important algorithms in this model.

One important reason to study quantum computers is that they pose a serious challenge
to the strong Church-Turing thesis (see Section 1.6.3), which stipulates that every physi-
cally reasonable computation device can be simulated by a Turing machine with at most
polynomial slowdown. As we will see in Section 10.6, there is a polynomial-time algorithm
for quantum computers to factor integers, whereas despite much effort, no such algorithm is
known for deterministic or probabilistic Turing machines. If in fact there is no efficient clas-
sical algorithm to factor integers (and indeed society currently relies on this conjecture since
it underlies the presumed security of cryptographic schemes such as RSA) and if quantum
computers are physically realizable, then the strong Church-Turing thesis is wrong. Physi-
cists are also interested in quantum computers because studying them may shed light on
quantum mechanics, a theory which, despite its great success in predicting experiments, is
still not fully understood.

Very little physics is needed to understand the central results of quantum computing.
One basic fact is that the physical parameters (energy, momentum, spin etc.) of an ele-
mentary particle such as an electron are quantized and can only take values in a discrete
set. Second, contrary to our basic intuition, the value of a physical parameter of a particle
(including location, energy, etc.) at any moment in time is not a single number. Rather
the parameter has a kind of probability wave associated with it, involving a “smearing” or
“superposition” over all possible values. The parameter only achieves a definite value when
it is measured by an observer, at which point we say that the probability wave collapses to
a single value.

This smearing of a parameter value until it is observed may seem analogous to philo-
sophical musings such as “if a tree falls in a forest with no one present to hear it, does
it make a sound?” But these probability waves are very real, and their interaction and

174 10 Quantum Computation

mutual interference creates experimentally measurable effects. Furthermore, according to
quantum mechanics, the probability waves are associated not just with single particles, but
also by any collection of particles (such as humans!). This interaction of probability waves
corresponding to collections of particles is key to the power of quantum computing, and
underlies the apparent exponential speedup provided by this model on certain problems. At
the same time, it is simplistic to describe quantum computing —as many popular science
authors do— as a “vastly parallel” computer. This “vast parallelism” is tightly regulated
by the laws of quantum mechanics, which currently seems to allow exponential speedups
only for a few well-structured problems.

The chapter is organized as follows. In Section 10.1 we describe the 2-slit experiment, one
of many experiments that illustrate the smearing/interference effects of quantum mechanics.
In Section 10.2 we formalize a simple quantum system called “qubit” (short for “quantum
bit”) that is the fundamental unit of quantum computing. We describe operations that
can be performed on systems of one or few qubits, and illustrate them in Section 10.2.1
using the famous EPR paradox, an experiment that serves to demonstrate (and verify)
the counterintuitive nature of quantum mechanics. Then in Section 10.3 we define the n-
qubit quantum register, and operations (including computations) that can be performed
on such registers. We define quantum circuits and the class BQP, which is the quantum
analogue of BPP. The three ensuing sections describe three basic algorithms known for
quantum computers, due to Grover, Simon and Shor respectively. Several important topics
in quantum computing, including lower bounds, quantum cryptography and quantum error
correction, are not covered in this chapter; see the chapter notes for links to further reading.

This chapter utilizes some basic facts of linear algebra and the space Cn. These are reviewed
in Appendix A; see also Section 10.3.1.

10.1 Quantum weirdness: the 2-slit experiment

Electron
Source

Number of electrons detected per hour

Figure 10.1 In the 2-slit experiment an electron source is placed between a wall with two
slits and a detector array. When one slit is covered then, as expected, the number of electron
detected is largest directly behind the open slit.

Now we describe an experiment, called the 2-slit experiment, that illustrates the fact
that basic physical properties of an elementary particle are “smeared.”

Suppose that, as in Figure 10.1, a source that fires electrons one by one (say, at the rate
of one electron per second) is placed in front of a wall containing two tiny slits. Beyond
the wall we place an array of detectors that light up whenever an electron hits them. We
measure the number of times each detector lights up during an hour. When we cover one
of the slits, we would expect that the detectors that are directly behind the open slit will
receive the largest number of hits, and as Figure 10.1 shows, this is indeed the case. When

10.1 Quantum weirdness: the 2-slit experiment 175

both slits are uncovered we expect that the number of times each detector is hit is the sum
of the number of times it is hit when the first slit is open and the number of times it is hit
when the second slit is open. In particular, uncovering both slits should only increase the
number of times each location is hit.

Surprisingly, this is not what happens. The pattern of hits exhibits the “interference”
phenomena depicted in Figure 10.2. In particular, at several detectors the total hit rate
is lower when both slits are open as compared to when a single slit is open. This defies
explanation if electrons behave as particles or “little balls”.

Number of electrons detected per hour

Figure 10.2 When both slits are open in the 2-slit experiment, the number of electrons
detected at each position is not the sum of numbers when either slit is opened. There are
even positions that are hit when each slit is open on its own, but are not hit when both slits
are open.

According to quantum mechanics, it is wrong to think of an electron as a “little ball”
that can either go through the first slit or the second (i.e., has a definite property). Rather,
somehow the electron instantaneously explores all possible paths to the detectors through
all open slits. Some paths are taken with positive “amplitude” and some with negative “am-
plitude” (see the quote from Feynman at the start of the chapter) and two paths arriving at
a detector with opposite signs will cancel each other. The end result is that the distribution
of hit rates depends upon the number of open slits, since the electron “finds out” how many
slits are open via this exploration of all possible paths.

You might be skeptical about this “path exploration,” and to check if it is actually going
on, you place a detector at each slit that lights up whenever an electron passes through that
slit. Thus if an electron is really going through both slits simultaneously, you hope to detect
it at both slits. However, when you try to make the electron reveal its quantum nature this
way, the quantum nature (i.e., interference pattern) disappears! The hit rates now observed
exactly correspond to what they would be if electrons were little balls: the sum of the
hits when each slit is open. The explanation is that, as stated above, observing an object
“collapses” its distribution of possibilities, and so changes the result of the experiment.1

One moral to draw from this is that quantum computers, if they are ever built, will have
to be carefully isolated from external influences and noise, since noise may be viewed as
a “measurement” performed by the environment on the system. Of course, we can never
completely isolate the system, which means we have to make quantum computation tolerant
of a little noise. This seems to be possible under some noise models, see the chapter notes.

1Of course, it is unclear why humans or detectors placed by humans serve to “collapse” the probability
wave, and inanimate objects such as slits do not. This is one of the puzzles of quantum mechanics, see the
chapter notes.

176 10 Quantum Computation

10.2 Quantum superposition and qubits

Now we describe quantum superposition using a very simple quantum system called a qubit,
which lays the groundwork for our formal development of quantum computing in the next
section. As a helpful example for readers who are new to quantum mechanics, we also
describe the famous EPR paradox, though understanding it not strictly necessary to under-
stand the rest of the chapter.

Classical computation involves manipulation of storage elements with finite memory: the
tape cell of a Turing Machine, or a bit in case of a Boolean circuit. The analogous unit
of storage in quantum computing is a qubit. We can think of it as an elementary particle
that can be in two basic states (which could correspond to values of energy, or spin or some
other physical parameter), which we denote by zero and one. However, unlike a classical
bit, this particle can be simultaneously in both basic states. Thus the state of a qubit at
any time is called a superposition of these basic states. Formally, we denote the basic states
by |0〉 and |1 〉 and generally allow a qubit to be in any state of the form α0 |0〉 + α1 |1 〉,
where α0, α1 are called amplitudes and are complex numbers satisfying |α0|2 + |α1|2 = 1.2 If
isolated from outside influences, the qubit stays in this superposition, until it is observed by
an observer. When the qubit is observed, with probability |α0|2 it is revealed to be in state

zero (i.e., |0 〉) and with probability |α1|2 it is revealed to be in state one (i.e., |1〉). After
observation the amplitude wave collapses and the values of the amplitudes are irretrievably
lost.

In this section we restrict attention to the case where the amplitudes are real (though
possibly negative) numbers. The power and “weirdness” of quantum computing is already
exhibited in this case (see also Exercise 10.5).

Analogously, a system of two qubits can exist in four basic states |00〉, |01〉, |10〉, |11〉
and the state of a 2-qubit system at any time is described by a superposition of the type

α00 |00〉 + α01 |01〉 + α10 |10〉 + α11 |11〉 .

where
∑

b1,b2
|αb1b2 |2 = 1. When this system is observed, its state is revealed to be |b1b2 〉

with probability |αb1b2 |2.
We will sometimes denote the state |xy 〉 as |x〉 |y 〉. Readers who are mystified by the

|· 〉 notation (which unfortunately is inescapable due to long tradition) may wish to look at
Note 10.1 for a more geometric description.

Example 10.2
The following are two legitimate state vectors for a 1-qubit quantum system:
1√
2
|0〉 + 1√

2
|1〉 and 1√

2
|0 〉 − 1√

2
|1 〉. Even though in both cases, if the qubit is

measured it will contain either 0 or 1 with probability 1/2, these are considered
distinct states and we will see that it is possible to differentiate between them
using quantum operations.
Because states are always unit vectors, we often drop the normalization factor
and so, say, use |0 〉 − |1 〉 to denote the state 1√

2
|0〉 − 1√

2
|1 〉.

We call the state where all coefficients are equal the uniform state. For example,
the uniform state for a 2-qubit system is

|00〉 + |01〉 + |10〉 + |11〉 ,

(where we dropped the normalization factor of 1
2). Using our earlier notation of

|x〉 |y 〉 for |xy 〉 (an operation that is easily checked to respect the distributive
law), so we can also write the uniform state of a 2-qubit system as

(|0〉 + |1 〉) (|0 〉 + |1〉)

which shows that this state just consists of two 1-qubit systems in uniform state.

2We note that in quantum mechanics the above is known as a pure quantum state, see also the remarks
following Definition 10.9.

10.2 Quantum superposition and qubits 177

Note 10.1 (The geometry of quantum states)

It is often helpful to think of quantum states geometrically as vectors. For example, in case
of the single qubit system (with real amplitudes), the two basic states can be visualized as
two orthogonal unit vectors |0 〉 and |1 〉 in R2 (say, |0〉 = (1, 0) and |1 〉 = (0, 1)). The state
of the system, which we denoted by α0 |0〉 + α1 |1 〉, can be interpreted as a vector that is
α0 times the first vector and α1 times the second. Since α0, α1 are real numbers satisfying
α2

0 + α2
1 = 1, there is a unique angle θ ∈ [0, 2π) such that α0 = cos θ, α1 = sin θ. Thus we

can think of the system state as cos θ |0〉+sin θ |1 〉; that is, it is a unit vector that makes an
angle θ with the |0〉 vector and an angle π/2 − θ with the |1 〉 vector. When measured, the
system’s state is revealed to be |0〉 with probability cos2 θ and |1〉 with probability sin2 θ.

|1>

|0>
θ

cos θ

s
in

 θ
v = cos θ |0> + sin θ |1>

Although it’s harder to visualize states with complex coefficients or more than one qubit,
geometric intuition can still be useful when reasoning about such states.

To manipulate the state of a qubit, we have to use a quantum operation, which is a
function that maps the current state to the new state. In this section we will only use
operations on single qubits. Quantum mechanics allows only unitary operations, which are
linear operations that preserve the invariant |α0|2 + |α1|2 = 1. In the case of single qubit
operations with real coefficients, this means that the allowed operations involve either a
reflection of the state vector about a fixed vector in R2 or a rotation of the state vector by
some angle θ ∈ [0, 2π).

10.2.1 EPR paradox

The EPR paradox, named after its proposers, Einstein, Podosky, and Rosen [EPR35] was a
thought experiment that shows that quantum mechanics allows systems in two far corners of
the universe to instantaneously coordinate their actions, seemingly contradicting the axiom
of Einstein’s special theory of relativity that nothing in the universe can travel faster than
light. Einstein, who despite his status as a founder of quantum theory (with his 1905 paper
on the photoelectric effect) was never quite comfortable with it, felt that quantum mechanics
must be modified to remove such paradoxes.

In 1964 John Bell showed how to turn the EPR thought experiment into an actual
experiment. Two systems far away from each other in the universe have a shared quantum
state (actually, a 2-qubit system). This shared state allows them to coordinate their actions
in a way that is provably impossible in a “classical” system.

Since then Bell’s experiment has been repeated in a variety of settings, always with the
same result: the predictions of quantum mechanics are correct, contrary to Einstein’s intu-
ition. Today, the EPR paradox is not considered a paradox, since the systems involved do
not transmit information faster than the speed of light— they merely act upon information
that was already shared, albeit in the form of a quantum superposition. Now we describe a
version of Bell’s experiment (or, more accurately, a variant due to Clauser et al [CHSH69]):

178 10 Quantum Computation

The parity game. We start by describing a game that seems to involve no quantum me-
chanics at all. Two players Alice and Bob are isolated from each other. The experimenter
asks them to participate in the following guessing game.

1. The experimenter chooses two random bits x, y ∈
R
{0, 1}.

2. He presents x to Alice and y to Bob.

3. Alice and Bob respond with bits a, b respectively.

4. Alice and Bob win if and only if a ⊕ b = x ∧ y, where ⊕ denotes the XOR operation
(addition modulo 2).

Note that the players’ isolation from each other can be ensured using the special theory
of relativity. The players are separated by a light year (say), each accompanied by an
assistant of the experimenter. At a designated time, the experimenter’s assistants toss their
independent random coins to create x and y, present them to Alice and Bob respectively,
receive their answers, and transmit everything to the experimenter at a central location.
Alice and Bob, being separated by a light year, cannot exchange any information between
the time they received x, y and before they gave their answers.

It is easy for Alice and Bob to ensure that they win with probability at least 3/4 e.g.,
by always sending a = b = 0. Now we show that this is the best they can do, which seems
intuitive since the setup forbids them from coordinating their responses. Thus a strategy for
the players is a pair of functions f, g : {0, 1} → {0, 1} such that the players’ answers a, b are
computed only as functions of the information they see, namely, a = f(x) and b = g(y). A
probabilistic strategy is a distribution on strategies.

Theorem 10.3 ([Bel64, CHSH69]) In the above scenario, no (deterministic or probabilistic)
strategy used by Alice and Bob can cause them to win with probability more than 3/4. ♦

Proof: Assume for the sake of contradiction that there is a (possibly probabilistic) strategy
that causes them to win with probability more than 3/4. By a standard averaging argument
there is a fixed choice of the players’ randomness that succeeds with at least the same
probability, and hence we may assume without loss of generality that the players’ strategy
is deterministic.

The function f : {0, 1} → {0, 1} that Alice uses can be one of only four possible functions:
it can be either the constant function zero or one, the function f(x) = x or the function
f(x) = 1 − x. We analyze the case that f(x) = x; the other cases are similar. Now Alice’s
response a is merely x, so the players win iff b = (x∧ y)⊕ x. On input y, Bob needs to find
b that makes them win. If y = 1 then x ∧ y = x and hence b = 0 will ensure their win with
probability 1. However, if y = 0 then (x ∧ y) ⊕ x = x and since Bob does not know x, the
probability that his output b is equal to x is at most 1/2. Thus the total probability of a win
is at most 3/4. �

The Parity Game with sharing of quantum information. Now we show that if Alice and
Bob can share a 2-qubit system (which they created in a certain state, and split between
them before they they were taken a light year apart) then they can circumvent Theorem 10.3
and win the parity game with probability better than 3/4 using the following strategy:

1. Before the game begins, Alice and Bob prepare a 2-qubit system in the state |00〉+|11〉,
which we will call the EPR state.

2. Alice and Bob split the qubits - Alice takes the first qubit and Bob takes the second
qubit. Note that quantum mechanics does not require the individual bits of a 2-qubit
quantum system to be physically close to one another. It is important that Alice and
Bob have not measured these qubits yet.

10.2 Quantum superposition and qubits 179

3. Alice receives the qubit x from the experimenter, and if x = 1 then she applies a
rotation by π/8 (22.5°) operation to her qubit. Since the operation involves only her
qubit, she can perform it even with no input from Bob. (The semantics of performing
a single qubit operation on a multiple-qubit system follow the natural intuition, but
see Section 10.3.3 for a formal description.)

4. Bob receives the qubit y from the experimenter, and if y = 1 he applies a rotation by
by −π/8 (−22.5°) operation to his qubit.

5. Both Alice and Bob measure their respective qubits and output the values obtained
as their answers a and b.

Note that the order in which Alice and Bob perform their rotations and measurements
does not matter - it can be shown that all orders yield exactly the same distribution (e.g.,
see Exercise 10.6). While splitting a 2-qubit system and applying unitary transformations
to the different parts may sound far fetched, this experiment had been performed several
times in practice, verifying the following prediction of quantum mechanics:

Theorem 10.4 With the above strategy, Alice and Bob win with probability at least 0.8.♦

Proof: Recall that Alice and Bob win the game if they output a different answer when
x = y = 1 and the same answer otherwise. The intuition behind the proof is that unless
x = y = 1, the states of the two qubits will be “close” to one another (with the angle
between being at most π/8 = 22.5°) and in the other case the states will be “far” (having
angle π/4 or 45°). Specifically we will show that (denoting by a Alice’s output and by b
Bob’s):

(1) If x = y = 0 then a = b with probability 1.

(2) If x 6= y then a = b with probability cos2(π/8) ≥ 0.85

(3) If x = y = 1 then a = b with probability 1/2.

Implying that the overall acceptance probability is at least 1
4 · 1 + 1

2 · 0.85 + 1
4 · 1

8 = 0.8.
In the case (1) both Alice and Bob perform no operation on their qubits, and so when

measured it will be either in the state |00〉 or |11〉, both resulting in Alice and Bob’s outputs
being equal. To analyze case (2), it suffices to consider the case that x = 0, y = 1 (the other
case is symmetrical). In this case Alice applies no transformation to her qubit, and Bob
rotates his qubit in a −π/8 angle. Imagine that Alice first measures her qubit, and then
Bob makes his rotation and measurements (this is OK as the order of measurements does
not change the outcome). With probability 1/2, Alice will get the value 0 and Bob’s qubit
will collapse to the state |0〉 rotated by a −π/8 angle, meaning that when measuring Bob
will obtain the value 0 with probability cos2(π/8). Similarly, if Alice gets the value 1 then
Bob will also output 1 with cos2(π/8) probability.

To analyze case (3), we just use direct computation. In this case, after both rotations
are performed, the 2-qubit system has the state

(cos(π/8) |0 〉 + sin(π/8) |1 〉) (cos(π/8) |0 〉 − sin(π/8) |1 〉)+

(− sin(π/8) |0 〉 + cos(π/8) |1 〉) (sin(π/8) |0 〉 + cos(π/8) |1 〉) =
(

cos2(π/8) − sin2(π/8)
)

|00〉 − 2 sin(π/8) cos(π/8) |01〉+
2 sin(π/8) cos(π/8) |10〉 +

(

cos2(π/8) − sin2(π/8)
)

|11〉 .

But since

cos2(π/8) − sin2(π/8) = cos(π/4) = 1√
2

= sin(π/4) = 2 sin(π/8) cos(π/8) ,

all coefficients in this state have the same absolute value and hence when measured the 2-
qubit system will yield either one of the four values 00, 01, 10 and 11 with equal probability
1/4. �

180 10 Quantum Computation

The constant 0.8 can be somewhat improved upon, see Exercise 10.1. Also, there are
known games with more dramatic differences in success probabilities between the classical
and quantum cases. In an interesting twist, in recent years the ideas behind EPR’s and
Bell’s experiments have been used for a practical goal: encryption schemes whose security
depends only on the principles of quantum mechanics, rather than any unproven conjectures
such as P 6= NP (see chapter notes).

10.3 Definition of quantum computation and BQP

In this section we describe quantum operations, which lead to the definition of quantum
gates, quantum computation, and BQP, the class of languages with efficient quantum
decision algorithms.

10.3.1 Some necessary linear algebra

We use in this chapter several elementary facts and notations involving the space CM . These
are reviewed in Section A.5 of the appendix, but here is a quick reminder:

• If z = a + ib is a complex number (where i =
√
−1), then z = a − ib denotes the

complex conjugate of z. Note that zz = a2 + b2 = |z|2.

• The inner product of two vectors u,v ∈ Cm, denoted by 〈u,v〉, is equal to
∑

x∈[M] uxvx.3

• The norm of a vector u, denoted by ‖u‖
2
, is equal to

√

〈u,u〉 =
√

∑

x∈[M] |ux|2.

• If 〈u,v〉 = 0 we say that u and v are orthogonal.

• A set
{

vi
}

i∈[M]
of vectors in CM is an orthonormal basis of CM if for every i, j ∈ [M],

〈vi,vj〉 is equal to 1 if i = j and equal to 0 if i 6= j.

• If A is an M × M matrix, then A∗ denotes the conjugate transpose of A. That is,
A∗

x,y = Ay,x for every x, y ∈ [M].

• An M × M matrix A is unitary if AA∗ = I, where I is the M × M identity matrix.

Note that if z is a real number (i.e., z has no imaginary component) then z = z. Hence,
if all vectors and matrices involved are real then the inner product is equal to the standard
inner product of Rn and the conjugate transpose operation is equal to the standard transpose
operation. Also, for real vectors u,v, 〈u,v〉 = cos θ‖u‖2‖v‖2 , where θ is the angle between
the u and v.

The next claim (left as Exercise 10.2) summarizes properties of unitary matrices:

Claim 10.5 For every M × M complex matrix A, the following conditions are equivalent:

1. A is unitary (i.e., AA∗ = I).

2. For every vector v ∈ CM , ‖Av‖
2

= ‖v‖
2
.

3. For every orthonormal basis
{

vi
}

i∈[M]
of CM , the set

{

Avi
}

i∈[M]
is an orthonormal

basis of CM .

4. The columns of A form an orthonormal basis of CM .

5. The rows of A form an orthonormal basis of CM .

3Some quantum computing texts use
∑

x∈[M] uxvx instead.

10.3 Definition of quantum computation and BQP 181

10.3.2 The quantum register and its state vector

In a standard digital computer, we implement a bit of memory by a physical object that has
two states: the ON or 1 state and the OFF or 0 state. By taking m such objects together
we have an m-bit register whose state can be described by a string in {0, 1}m

. A quantum
register is composed of m qubits, and its state is a superposition of all 2m basic states
(the “probability wave” alluded to in Section 10.1): a vector v = 〈v0m ,v0m−11, . . . ,v1m〉 ∈
C2m

, where
∑

x |vx|2 = 1. According to quantum mechanics, when measuring the register
(i.e., reading its value) we will obtain the value x with probability |vx|2 and furthermore
this operation will collapse the state of the register to the vector |x 〉 (in other words, the
coefficients corresponding to the basic states |y 〉 for y 6= x will become 0). In principle
such a quantum register can be implemented by any collection of m objects that can have
an ON and OFF states, although in practice there are significant challenges for such an
implementation.

10.3.3 Quantum operations

Now we define operations allowed by quantum mechanics.

Definition 10.6 (quantum operation)
A quantum operation for an m-qubit register is a function F : C2m → C2m

that maps its
previous state to the new state and satisfies the following conditions:

Linearity: F is a linear function. That is, for every v ∈ C2n

, F (v) =
∑

x vxF (|x〉).

Norm preservation: F maps unit vectors to unit vectors. That is, for every v with
‖v‖

2
= 1, ‖F (v)‖

2
= 1.

The second condition (norm preservation) is quite natural given that only unit vectors
can describe states. The linearity condition is imposed by the theory of quantum mechanics.
Together, these two conditions imply that every quantum operation F can be described by
a 2m × 2m unitary matrix. The following is immediate.

Lemma 10.7 (Composition of quantum operations) If A1, A2 are matrices representing any
quantum operations, then their composition (i.e., applying A1 followed by applying A2)
is also a quantum operation whose matrix is A2A1. In particular, since A1A

∗
1 = I, every

quantum operation has a corresponding “inverse” operation that cancels it. (Quantum
computation is “reversible.”) ♦

Since quantum operations are linear, it suffices to describe their behavior on any linear
basis for the space C2m

and so we often specify quantum operations by the way they map
the standard basis. However, not every classical operation is unitary, so designing quantum
operations requires care.

10.3.4 Some examples of quantum operations

Here are some examples of quantum operations:

Flipping qubits. If we wish to “flip” the first qubit in an m-qubit register, (i.e., apply the
NOT operation on the first qubit), then this can be done as a quantum operation that maps

the basis state |b, x〉 for b ∈ {0, 1} , x ∈ {0, 1}m−1
to the basis state |1 − b, x〉. The matrix of

this operation just performs a permutation on the standard basis, and permutation matrices
are always unitary. Important note on notation: This example involved an operation

182 10 Quantum Computation

on the first qubit, so the remaining qubits in x are unaffected and unnecessarily cluttering
the notation. From now on, whenever we describe operations on only a subset of qubits,
we will often drop the unaffected qubits from the notation. The above operation can be
described as |0 〉 7→ |1 〉 and |1 〉 7→ |0 〉.

Reordering qubits. If we wish to exchange the values of two qubits the following operation
(again, unitary since it is a permutation of basic states) suffices: |01〉 7→ |10〉 and |10〉 7→
|01〉, with |00〉 and |11〉 being mapped to themselves. This operation is described by the
following 22×22 matrix (where we index the rows and columns according to lexicographical
order |00〉, |01〉, |10〉, |11〉):











1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1











.

Note that by combining such operations we can arbitrarily reorder the qubits of an m-qubit
register.

Copying qubits. Now suppose we wish to copy the first qubit into the second. Proceeding
naively, we might try the following: both |10〉 and |11〉 map to |11〉 whereas both |00〉 and
|01〉 map to |00〉. However, this is not a reversible operation and hence not unitary! In fact,
the so-called no cloning theorem rules out any quantum operation that copies qubits; see the
Chapter notes. However, while designing quantum algorithms it usually suffices to copy a
qubit in “write once” fashion, by keeping around a supply of fresh qubits in a predetermined
state, say |0〉, and only writing them over once. Now the operation |xy 〉 7→ |x(x ⊕ y) 〉
provides the effect of copying the first qubit, assuming the algorithm designer takes care to
apply it only where the second qubit is a fresh (i.e., unused) qubit in state |0〉, and thus
the operation never encounters the states |01〉, |11〉. Since this operation negates the second
qubit y if and only if x is in the state |1〉 it known as the controlled NOT (or CNOT for
short) operation in the literature.

Rotation on single qubit. Thinking of the phase of a qbit as a 2-dimensional vector as in
Note 10.1, we may wish to apply a rotation this state vector by an angle θ. This corresponds
to the operation |0〉 7→ cos θ |0 〉 + sin θ |1 〉, and |1〉 7→ − sin θ |0 〉 + cos γ |1 〉, described by
the matrix

(

cos θ − sin θ
sin θ cos θ

)

, which is unitary. Note that when θ = π (i.e., 180°) this amounts
to flipping the sign of the state vector (i.e., the map v 7→ −v).

AND of two bits. Now consider the classical AND operation, concretely, the operation
that replaces the first qubit of the register by the AND of the first two bits. One would try
to think of this as a linear operation |b1b2 〉 7→ |b1 ∧ b2 〉 |b2 〉 for b1, b2 ∈ {0, 1}. But this is
unfortunately not reversible and hence not unitary.

However, there is a different way to achieve the effect of an AND operation. This uses a
“reversible AND”, which uses an additional scratchpad in the form of a fresh qubit b3. The
operation is |b1 〉 |b2 〉 |b3 〉 7→ |b1 〉 |b2 〉 |b3 ⊕ (b1 ∧ b2) 〉 for all b1, b2, b3 ∈ {0, 1}. This operation
is unitary (in fact, permutation matrix) and thus a valid quantum operation, described by
the following matrix































1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0































.

10.3 Definition of quantum computation and BQP 183

As before, the algorithm designer will only apply this operation when b3 is a fresh qubit
in state |0 〉. This operation is also known in quantum computing as the Toffoli gate. One
can similarly obtain a “reversible OR” quantum operation. Together, the reversible OR
and AND gates are key to showing that quantum computers can simulate ordinary Turing
machines (see Section 10.3.7).

The Hadamard operation. The Hadamard gate it is the single qubit operation that (up
to normalization) maps |0 〉 to |0 〉 + |1〉 and |1〉 to |0〉 − |1 〉. More succinctly, the state |b 〉
is mapped to |0〉 + (−1)b |1 〉. The corresponding matrix is 1√

2

(

1 1
1 −1

)

.

Note that if we apply a Hadamard gate to every qubit of an m-qubit register, then for
every x ∈ {0, 1}m

, the state |x 〉 is mapped to

(|0 〉 + (−1)x1 |1 〉)(|0〉 + (−1)k2 |1 〉) · · · (|0 〉 + (−1)xm |1〉) =

∑

y∈{0,1}m





∏

i : yi=1

(−1)xi



 |y 〉 =
∑

y∈{0,1}m

−1x�y |y 〉 , (1)

where x�y denotes the dot product modulo 2 of x and y. The unitary matrix corresponding

to this operation is the 2m × 2m matrix whose (x, y)th entry is −1x�y
√

2n
(identifying [2m] with

{0, 1}m
). This operation plays a key role in quantum algorithms4.

10.3.5 Quantum computation and BQP

Even though the rules of quantum mechanics allow an arbitrary unitary matrix operation to
be applied on the current state of a qantum register, not all such operations can be feasibly
implemented. However, highly ‘local” operations— those that act on only a finite number
of qubits— could perhaps be implemented. We thus define these as elementary steps in
quantum computation.

Definition 10.8 (Elementary quantum operations or quantum gates) An quantum operation
is called elementary, or sometimes a quantum gate, if it acts on three or less qubits of the
register.5 ♦

Note that an elementary operation on an m-qubit register can be specified by three
indices in [m] and an 8×8 unitary matrix. For example, if U is any 8×8 unitary matrix that
has to be applied to the qbits numbered 2, 3, 4 then this can be viewed as a an elementary
quantum operation F : C2m → C2m

that maps the basis state |x1x2 . . . xm 〉 to the state
|x1 〉(U |x2x3x4 〉) |x5 . . . xm 〉 for all x1, x2, . . . , xm ∈ {0, 1}.

Now we can define quantum computation: it is a sequence of elementary operations
applied to a quantum register.

4We will encounter this matrix again in Chapters 1 and 19 where we describe the Walsh-Hadamard error
correcting code. (Though there will describe it as a 0/1 matrix over GF(2) rather than ±1 matrix over C.)

5The constant three is arbitrary in the sense that replacing it with every constant greater or equal to
two would lead to an equivalently powerful model.

184 10 Quantum Computation

Definition 10.9 (Quantum Computation and the class BQP)
Let f : {0, 1}∗ → {0, 1} and T : N → N be some functions. We say that f is computable

in quantum T (n)-time if there is a polynomial-time classical TM that on input (1n, 1T (n))
for any n ∈ N outputs the descriptions of quantum gates F1, . . . , FT such that for every
x ∈ {0, 1}n

, we can compute f(x) by the following process with probability at least 2/3:

1. Initialize an m qubit quantum register to the state |x0n−m 〉 (i.e., x padded with
zeroes), where m ≤ T (n).

2. Apply one after the other T (n) elementary quantum operations F1, . . . , FT to the
register.

3. Measure the register and let Y denote the obtained value. (That is, if v is the final
state of the register, then Y is a random variable that takes the value y with probability
|vy|2 for every y ∈ {0, 1}m

.)

4. Output Y1.

A Boolean function f : {0, 1}∗ → {0, 1} is in BQP if there is some polynomial p : N → N
such that f is computable in quantum p(n)-time.

Some remarks are in order:

1. This definition easily generalizes to functions with more than one bit of output.

2. Elementary operations are represented by 8×8 matrices of complex numbers, which a
TM cannot write per se. However, it suffices for the TM to write the most significant
O(log T (n)) bits of the complex number; see Exercise 10.8.

3. It can be shown that the set of elementary operations or gates (which is an infinite set)
can be reduced without loss of generality to two universal operations ; see Section 10.3.8

4. Readers familiar with quantum mechanics or quantum computing may notice that
our definition of quantum computation disallows several features that are allowed by
quantum mechanics, such as mixed states that involve both quantum superposition
and probability and measurement in different bases than the standard basis. However,
none of these features adds to the computing power of quantum computers. Another
feature that we do not explicitly allow is performing partial measurements of some of
the qubits in the course of the computation. Exercise 10.7 shows that such partial
measurements can always be eliminated without much loss of efficiency, though it will
sometime be convenient for us to describe our algorithms as using them.

Quantum versus probabilistic computation: At this point the reader may think that
the quantum model “obviously” gives exponential speedup as the states of registers are
described by 2m-dimensional vectors and operations are described by 2m × 2m matrices.
However, this is not the case. One can describe even ordinary probabilistic computation
in a similar way: we can think of the state of an m-qubit register as a 2m-dimensional
vector whose xth coordinate denotes the probability that the register contains the string x,
and considering probabilistic operations as linear stochastic maps from R2m

to R2m

: see
Exercise 10.4. The added power of quantum computing seems to derive from the fact that
here we allow vectors to have negative coefficients (recall Feynman’s quote from the start
of the chapter), and the norm that is preserved at each step is the Euclidean (i.e., `2)
norm rather than the sum (i.e., `1) norm (see also Exercise 10.5). Note also that classical
computation, whether deterministic or probabilistic, is a subcase of quantum computation,
as we see in Section 10.3.7.

10.3 Definition of quantum computation and BQP 185

10.3.6 Quantum circuits

Definition 10.9 is reminiscent of the the definition of classical straight-line programs, which
as we saw in Chapter 6 is an equivalent model to Boolean circuits (see Note 6.4). Similarly,
one can define quantum computation and BQP also in terms of quantum circuits (in fact,
this is the definition appearing in most texts). Quantum circuits are similar to Boolean cir-
cuits: these are directed acyclic graphs with sources (vertices with in-degree zero) denoting
the inputs, sinks (vertices with out-degree zero) denoting the outputs, and internal nodes
denoting the gates. One difference is that this time the gates are labeled not by the opera-
tions AND,OR and NOT but by 2 × 2, 4 × 4 or 8 × 8 unitary matrices. Another difference
is that (since copying is not allowed) the out-degree of gates and even inputs cannot be
arbitrarily large but rather the out-degree of each input vertex is one, and the in-degree and
out-degree of each gate are equal (and are at most 3). We also allow special “workspace”
or “scratchpad” inputs that are initialized to the state |0 〉.

Such circuits are often described in the literature using diagrams such as the one below,
depicting a circuit that on input |q0 〉 |q1 〉 first applies the Hadamard operation on |q0 〉 and
then applies the mapping |q0q1 〉 7→ |q0(q0 ⊕ q1) 〉:

|q0〉 H •

|q1〉 ⊕

10.3.7 Classical computation as a subcase of quantum computation

In Section 10.3.3, we saw quantum implementations of the classical NOT and AND opera-
tions. More generally, we can efficiently simulate any classical computation using quantum
operations:

Lemma 10.10 (Boolean circuits as a subcase of quantum circuits) If f : {0, 1}n → {0, 1}m

is computable by a Boolean circuit of size S then there is a sequence of 2S +m+n quantum
operations computing the mapping |x 〉

∣

∣02m+S 〉 7→ |x 〉 |f(x) 〉
∣

∣0S+m 〉. ♦

Proof: Replace each Boolean gate (AND,OR, NOT) by its quantum analog as already
outlined. The resulting computation maps |x〉

∣

∣02m 〉
∣

∣0S 〉 7→ |x〉 |f(x)0m 〉 |z 〉, where z is
the string of values taken by the internal wires in the Boolean circuit (these correspond
to “scratchpad” memory used by the quantum operations at the gates) and the string 0m

consists of qubits unused so far. Now copy f(x) onto the string 0m using m operations of the
form |bc 〉 7→ |b(b ⊕ y) 〉. Then run the operations corresponding to the Boolean operations
in reverse (applying the inverse of each operation). This erases the original copy of f(x) as
well as |z 〉 and leaves behind clean bits in state |0〉, together with one copy of f(x). �

Since a classical Turing machine computation running in T (n) steps has an equivalent
Boolean circuit of size O(T (n) log T (n)) it also follows that P ⊆ BQP. Using the Hadamard
operation that maps |0〉 to |0 〉+ |1〉 we can get a qubit that when measured gives |0〉 with
probability 1/2 and |1 〉 with probability 1/2, simulating a coin toss. Thus the following
corollary is immediate:

Corollary 10.11 BPP ⊆ BQP. ♦

10.3.8 Universal operations

Allowing every 3-qubit quantum operation as “elementary” seems problematic since this
set is infinite. By contrast, classical Boolean circuits only need the gates AND, OR and
NOT. Fortunately, a similar result holds for quantum computation. The following theorem
(whose proof we omit) shows that there is a set of few operations that suffice to construct
any quantum operation:

186 10 Quantum Computation

Theorem 10.12 (Universal basis for quantum operations [Deu89, Kit97])
For every D ≥ 3 and ε > 0 there is ` ≤ 100(D log 1/ε)3 such that the following is true. Every
D × D unitary matrix U can be approximated as a product of unitary matrices U1, . . . , U`

in the sense that its (i, j)the entry for each i, j ≤ D satisfies

∣

∣

∣Ui,j −
(

U` · · ·U1

)

i,j

∣

∣

∣ < ε ,

and each Ur corresponds to applying either the Hadamard gate 1√
2

(

1 1
1 −1

)

, the Toffoli gate

|abc 〉 7→ |ab(c ⊕ a ∧ b)〉 or the phase shift gate
(

1 0
0 i

)

, on at most 3 qubits.

It can be shown that such ε-approximation for, say, ε < 1
10T suffices for simulating any T -

time quantum computation (see Exercise 10.8), and hence we can replace any computation
using T arbitrary elementary matrices by a computation using only one of the above three
gates. Other universal gates are also known and in particular Shi [Shi03] showed that for the
purpose of quantum computation, the Hadamard and Toffoli gates alone suffice (this uses the
fact that complex numbers are not necessary for quantum computation, see Exercise 10.5).

One corollary of Theorem 10.12 is that 3-qubit gates can be used to simulate k-qubit
gates for every constant k > 3 (albeit at a cost exponential in k). This means that when
designing quantum algorithms we can consider every k-qubit gate as elementary as long as k
is smaller than some absolute constant. We can use this fact to obtain a quantum analog of
the “if cond then” construct of classical programming languages. That is, given a T step
quantum circuit for an n-qubit quantum operation U then we can compute the quantum
operation Controlled-U in O(T) steps, where Controlled-U maps a vector |x1 . . . xnxn+1 〉 to
|U(x1 . . . xn)xn+1 〉 if xn+1 = 1 and to itself otherwise. The reason is that we can transform
every elementary operation F in the computation of U to the analogous “Controlled-F”
operation. Since the “Controlled-F” operation depends on at most 4 qubits, it too can be
considered elementary.

10.4 Grover’s search algorithm.

We now describe Grover’s algorithm, one of the basic and quite useful algorithms for quan-
tum computers. This section can be read independently of sections 10.5 and 10.6, that
describe Simon’s and Shor’s algorithms, and so the reader who is anxious to see the integer
factorization algorithm can skip ahead to Section 10.5.

Consider the NP-complete problem SAT of finding, given an n-variable Boolean formula
ϕ, whether there exists an assignment a ∈ {0, 1}n such that ϕ(a) = 1. Using “classical”
deterministic or probabilistic TM’s, we do not know how to solve this problem better than
the trivial poly(n)2n-time algorithm.6 We now show a beautiful algorithm due to Grover
that solves SAT in poly(n)2n/2-time on a quantum computer. This is a significant improve-
ment over the classical case, even if it falls way short of showing that NP ⊆ BQP. In fact,
Grover’s algorithm solves an even more general problem, namely, satisfiability of a circuit
with n inputs.

Theorem 10.13 (Grover’s Algorithm [Gro96])
There is a quantum algorithm, that given as input every polynomial-time computable func-

tion f : {0, 1}n → {0, 1} (i.e., represented as a circuit computing f) finds in poly(n)2n/2

time a string a such that f(a) = 1 (if such a string exists).

6There are slightly better algorithms for special cases such as 3SAT.

10.4 Grover’s search algorithm. 187

Grover’s algorithm is best described geometrically. We assume that the function f has
a single satisfying assignment a. (The techniques described in Chapter 17, Section 17.4.1
allow us to reduce the general problem to this case.) Consider an n-qubit register, and let
u denote the uniform state vector of this register. That is, u = 1

2n/2

∑

x∈{0,1}n |x〉. The

angle between u and the basis state |a 〉 is equal to the inverse cosine of their inner product
〈u, |a 〉〉 = 1

2n/2 . Since this is a positive number, this angle is smaller than π/2 (90°), and

hence we denote it by π/2− θ, where sin θ = 1
2n/2 and hence (using the inequality θ ≥ sin θ

for θ > 0), θ ≥ 2−n/2.
The algorithm starts with the state u, and at each step it gets nearer the state |a 〉. If

its current state makes an angle π/2 − α with |a 〉 then at the end of the step it makes an
angle π/2 − α − 2θ. Thus, in O(1/θ) = O(2n/2) steps it will get to a state v whose inner
product with |a 〉 is larger than, say, 1/2, implying that a measurement of the register will
yield a with probability at least 1/4.

The main idea is that to rotate a vector w towards the unknown vector |a〉 by an angle
of θ, it suffices to take two reflections around the vector u and the vector e =

∑

x 6=a |a 〉 (the
latter is the vector orthogonal to |a 〉 on the plane spanned by u and |a 〉). See Figure 10.3
for a “proof by picture”.

|a>

u

θ~2-n/2

w

α

e

α+θ

|a>

u

θ~2-n/2
e

θ+α

α+2θ

Step 1: Reflect around e Step 2: Reflect around u

Figure 10.3 We transform a vector w in the plane spanned by |a 〉 and u into a vector
w

′′ that is 2θ radians close to |a 〉 by performing two reflections. First, we reflect around
e =

∑

x 6=a |x 〉 (the vector orthogonal to |a 〉 on this plane), and then we reflect around

u. If the original angle between w and |a 〉 was π/2 − θ − α then the new angle will be
π/2 − θ − α − 2θ. We can restrict our attention to the plane spanned by u and |a 〉 as the
reflections leave all vectors orthogonal to this plane fixed.

To complete the algorithm’s description, we need to show how we can perform the
reflections around the vectors u and e. That is, we need to show how we can in polynomial
time transform a state w of the register into the state that is w’s reflection around u
(respectively, e). In fact, we will not work with an n-qubit register but with an m-qubit
register for m that is polynomial in n. However, the extra qubits will only serve as “scratch
workspace” and will always contain zero except during intermediate computations (thanks
to the “cleanup” idea of the proof of Lemma 10.10), and hence can be safely ignored.

Reflecting around e. Recall that to reflect a vector w around a vector v, we express w
as αv + v⊥ (where v⊥ is orthogonal to v) and output αv − v⊥. Thus the reflection of w
around e is equal to

∑

x 6=a wx |x〉 − wa |a 〉. Yet, it is easy to perform this transformation:

1. Since f is computable in polynomial time, we can compute the transformation |xσ 〉 7→
|x(σ ⊕ f(x)) 〉 in polynomial time (this notation ignores the extra workspace that may
be needed, but this won’t make any difference). This transformation maps |x0 〉 to
|x0 〉 for x 6= a and |a0〉 to |a1〉.

188 10 Quantum Computation

2. Then, we apply the elementary transformation (known as a Z gate) |0 〉 7→ |0 〉, |1 〉 7→
− |1 〉 on the qubit σ. This maps |x0 〉 to |x0〉 for x 6= a and maps |a1〉 to − |a1 〉.

3. Then, we apply the transformation |xσ 〉 7→ |x(σ ⊕ f(x)) 〉 again, mapping |x0 〉 to |x0 〉
for x 6= a and maps |a1〉 to |a0〉.

The final result is that the vector |x0 〉 is mapped to itself for x 6= a, but |a0〉 is mapped
to − |a0〉. Ignoring the last qubit, this is exactly a reflection around |a 〉.

Reflecting around u. To reflect around u, we first apply the Hadamard operation to each
qubit, mapping u to |0 〉. Then, we reflect around |0〉 (this can be done in the same way
as reflecting around |a〉, just using the function g : {0, 1}n → {0, 1} that outputs 1 iff its
input is all zeroes instead of f). Then, we apply the Hadamard operation again, mapping
|0 〉 back to u.

Together these operations allow us to take a vector in the plane spanned by |a 〉 and u
and rotate it 2θ radians closer to |a 〉. Thus if we start with the vector u, we will only need
to repeat them O(1/θ) = O(2n/2) to obtain a vector that, when measured, yields |a 〉 with
constant probability.

This completes the proof of Theorem 10.13. For the sake of completeness, Figure 10.4
contains the full description of Grover’s algorithm. �

10.4 Grover’s search algorithm. 189

Grover’s Search Algorithm.

Goal: Given a polynomial-time computable f : {0, 1}n → {0, 1} with a unique a ∈ {0, 1}n such that
f(a) = 1, find a.

Quantum register: We use an n+1+m-qubit register, where m is large enough so we can compute
the transformation |xσ0m 〉 7→ |x(σ ⊕ f(x))0m 〉.
Operation State (neglecting normalizing factors)

Initial state:
∣

∣0n+m+1 〉
Apply Hadamard operation to first n qubits. u

∣

∣0m+1 〉 (where u denotes
∑

x∈{0,1}n |x 〉)

For i = 1, . . . , 2n/2 do: vi
∣

∣0m+1 〉
We let v1 = u and maintain the invariant that
〈vi, |a 〉〉 = sin(iθ), where θ ∼ 2−n/2 is such that
〈u, |a 〉〉 = sin(θ)

Step 1: Reflect around e =
∑

x 6=a |x 〉:
1.1 Compute |xσ0m 〉 7→ |x(σ ⊕ f(x))0m 〉 ∑

x 6=a vi
x |x 〉

∣

∣0m+1 〉 + vi
a |a 〉 |10m 〉

1.2 If σ = 1 then multiply vector by −1, otherwise
do not do anything.

∑

x 6=a vi
x |x 〉

∣

∣0m+1 〉 − vi
a |a 〉 |10m 〉

1.3 Compute |xσ0m 〉 7→ |x(σ ⊕ f(x))0m 〉. wi
∣

∣0m+1 〉 =
∑

x 6=a vi
x |x 〉

∣

∣0m+1 〉 − vi
a |a 〉 |00m 〉.

(wi is vi reflected around
∑

x 6=a |x 〉.)
Step 2: Reflect around u:

2.1 Apply Hadamard operation to first n qubits. 〈wi,u〉 |0n 〉
∣

∣0m+1 〉 +
∑

x 6=0n αx |x 〉
∣

∣0m+1 〉,
for some coefficients αx’s (given by αx =
∑

z(−1)x�zwi
z |z 〉).

2.2 Reflect around |0 〉:
2.2.1 If first n-qubits are all zero then flip n + 1st

qubit.
〈wi,u〉 |0n 〉 |10m 〉 +

∑

x 6=0n αx |x 〉
∣

∣0m+1 〉

2.2.2 If n + 1st qubit is 1 then multiply by −1 −〈wi,u〉 |0n 〉 |10m 〉 +
∑

x 6=0n αx |x 〉
∣

∣0m+1 〉
2.2.3 If first n-qubits are all zero then flip n + 1st

qubit.
−〈wi,u〉 |0n 〉

∣

∣0m+1 〉 +
∑

x 6=0n αx |x 〉
∣

∣0m+1 〉

2.3 Apply Hadamard operation to first n qubits. vi+1
∣

∣0m+1 〉 (where vi+1 is wi reflected around u)

Measure register and let a′ be the obtained value
in the first n qubits. If f(a′) = 1 then output a′.
Otherwise, repeat.

Figure 10.4 Grover’s Search Algorithm

190 10 Quantum Computation

10.5 Simon’s Algorithm

Although beautiful, Grover’s algorithm still has a significant drawback: it is merely quadrat-
ically faster than the best known classical algorithm for the same problem. In contrast, in
this section we show Simon’s algorithm that is a polynomial-time quantum algorithm solving
a problem for which the best known classical algorithm takes exponential time.

Simon’s problem: Given: A polynomial-size classical circuit for a function f : {0, 1}n →
{0, 1}n

such that there exists a ∈ {0, 1}n
satisfying f(x) = f(y) iff x = y ⊕ a for every

x, y ∈ {0, 1}n
.

Goal: find this string a.

Theorem 10.14 (Simon’s Algorithm [Sim94])
There is a polynomial-time quantum algorithm for Simon’s problem.

Two natural questions are (1) why is this problem interesting? and (2) why do we believe
it is hard to solve for classical computers? The best answer to (1) is that, as we will see in
Section 10.6, a generalization of Simon’s problem turns out to be crucial in the quantum
polynomial-time algorithm for the famous integer factorization problem. Regarding (2), of
course we do not know for certain that this problem does not have a classical polynomial-
time algorithm (in particular, if P = NP then there obviously exists such an algorithm).
However, some intuition why it may be hard can be gleaned from the following black box
model: suppose that you are given access to a black box (or oracle) that on input x ∈ {0, 1}n

,
returns the value f(x). Would you be able to learn a by making at most a subexponential
number of queries to the black box? It is not hard to see that if a is chosen at random from
{0, 1}n

and f is chosen at random subject to the condition that f(x) = f(y) iff x = y⊕a then
no algorithm can successfully recover a with reasonable probability using significantly less
than 2n/2 queries to the black box. Indeed, an algorithm using fewer queries is very likely
to never get the same answer to two distinct queries, in which case it gets no information
about the value of a.

10.5.1 Proof of Theorem 10.14

Simon’s algorithm is actually quite simple. It uses a register of 2n + m qubits, where m is
the number of workspace bits needed to compute f . (Below we will ignore the last m qubits
of the register, since they will be always set to all zeroes except in intermediate steps of
f ’s computation.) The algorithm first uses n Hadamard operations to set the first n qubits
to the uniform state and then apply the operation |xz 〉 7→ |x(z ⊕ f(x) 〉 to the register,
resulting (up to normalization) in the state

∑

x∈{0,1}n

|x〉 |f(x) 〉 =
∑

x∈{0,1}n

(|x 〉 + |x ⊕ a 〉) |f(x) 〉 . (2)

We then measure the second n bits of the register, collapsing its state to

|xf(x) 〉 + |(x ⊕ a)f(x) 〉 (3)

for some string x (that is chosen uniformly from {0, 1}n
). You might think that we’re done

as the state (3) clearly encodes a, however we cannot directly learn a from this state: if we
measure the first n bits we will get with probability 1/2 the value x and with probability 1/2

the value x⊕a. Even though a can be deduced from these two values combined, each one of
them on its own yields no information about a. (This point is well worth some contemplation,
as it underlies the subtleties involved in quantum computation and demonstrates why a

10.6 Shor’s algorithm: integer factorization using quantum computers 191

quantum algorithm is not generally equivalent to performing exponentially many classical
computation in parallel.)

However, consider now what happens if we perform another n Hadamard operations on
the first n bits. Since this maps x to the vector

∑

y(−1)x�y |y 〉, the new state of the first n
bits will be

∑

y

(

(−1)x�y + (−1)(x⊕a)�y
)

|y 〉 =
∑

y

(

(−1)x�y + (−1)x�y(−1)a�y
)

|y 〉 . (4)

For every y ∈ {0, 1}m, the yth coefficient in the state (4) is nonzero if and only if if and only
if a � y = 0, and in fact if measured, the state (4) yields a uniform y ∈ {0, 1}n

satisfying
a � y = 0.

Repeating the entire process k times, we get k uniform strings y1, . . . , yk satisfying
y � a = 0 or in other words, k linear equations (over the field GF(2)) on the variables
a1, . . . , an. It can be easily shown that if, say, k ≥ 2n then with high probability there will
be n− 1 linearly independent equations among these (see Exercise 10.9), and hence we will
be able to retrieve a from these equations using Gaussian elimination. This completes the
proof of Theorem 10.14. For completeness, a full description of Simon’s algorithm can be
found in Figure 10.5. �

Simon’s Algorithm.

Goal: Given a polynomial-time computable f : {0, 1}n → {0, 1}n such that there is some a ∈
{0, 1}n satisfying f(x) = f(y) iff y = x ⊕ a for every x, y ∈ {0, 1}n, find a.

Quantum register: We use an 2n+m-qubit register, where m is large enough so we can compute
the transformation |xz0m 〉 7→ |x(z ⊕ f(x))0m 〉. (Below we ignore the last m qubits of the register
as they will always contain 0m except in intermediate computations of f .)

Operation State (neglecting normalizing factors)

Initial state:
∣

∣02n 〉
Apply Hadamard operation to first n qubits.

∑

x |x0n 〉
Compute |xz 〉 7→ |x(y ⊕ f(x)) 〉 ∑

x |xf(x) 〉 =
∑

x (|x 〉 + |x ⊕ a 〉) |f(x) 〉
Measure second n bits of register. (|x 〉 + |x ⊕ a 〉) |f(x) 〉
Apply Hadamard to first n bits.

(

∑

y(−1)x�y(1 + (−1)a�y) |y 〉
)

|f(x) 〉 =

2
∑

y:a�y=0(−1)x�y |y 〉 |f(x) 〉

Measure first n qubits of register to obtain a
value y such that y � a = 0. Repeat until we
get a sufficient number of linearly independent
equations on a.

Figure 10.5 Simon’s Algorithm

10.6 Shor’s algorithm: integer factorization using quantum com-
puters

The integer factorization problem is to find, given an integer N , the set of all prime factors of
N (i.e., prime numbers that divide N). By a polynomial-time algorithm for this problem we
mean an algorithm that runs in time polynomial in the description of N , i.e., poly(log(N))
time. Although people have thought about factorization for at least 2000 years, we still do
not know of a polynomial-time algorithm for it: the best classical algorithm takes roughly

2(log N)1/3

steps to factor N [LLMP90]. In fact, the presumed difficulty of this problem
underlies many popular encryption schemes (such as RSA, see Section 9.2.1). Therefore, it
was quite a surprise when in 1994 Peter Shor showed the following result, which is now the

192 10 Quantum Computation

most famous algorithm for quantum computers, and the strongest evidence that BQP may
contain problems outside of BPP.

Theorem 10.15 (Shor’s Algorithm: Factoring in BQP [Sho97])
There is a quantum algorithm that given a number N , runs in time poly(log(N)) and outputs
the prime factorization of N .

Shor’s ideas in nutshell. The algorithm uses the following observations. First, since N
has at most log N factors, it clearly suffices to show how to find a single factor of N in
poly(log N) time because we can then repeat the algorithm with N divided by that factor,
and thus find all factors. Second, it is a well-known fact that in order to find a single
factor, it suffices to be able to find the order of a random number A (mod N), in other
words, the smallest r such that Ar ≡ 1 (mod N). This is detailed in Section 10.6.4, but the
idea is that with good probability, the order r of A will be even and furthermore Ar/2−1

will have a non-trivial common factor with N , which we can find using a GCD (greatest
common divisor) computation. Third, the mapping A 7→ Ax (mod N) is computable in
poly(log N) time even on classical TMs (and so in particular by quantum algorithms) using
fast exponentiation; see Exercise 10.10.

Using these observations we can come up with a simple polylog(N)-time quantum al-
gorithm that transforms a quantum register initialized to all zeros into the state that is
the uniform superposition of all states of the type |x〉, where x ≤ N and satisfies Ax ≡ y0

(mod N) for some randomly chosen y0 ≤ N − 1. By elementary number theory, the set of
such x’s form an arithmetic progression of the type x0 + ri for i = 1, 2, . . . where Ax0 ≡ y0

(mod N) and r is the order of A.
By now the problem is beginning to look quite a bit like Simon’s problem, since we have

created a quantum state involving a strong periodicity (namely, an arithmetic progression)
and we are interested in determining its period. In engineering and mathematics, a classical
tool for detecting periods is the Fourier Transform (see Section 10.6.1). Below, we describe
the quantum Fourier transform (QFT), which allows us to detect periods in a quantum
state. This is a quantum algorithm that takes a register from some arbitrary state f ∈ CM

into a state whose vector is the Fourier transform f̂ of f . The QFT takes only O(log2 M)
elementary steps and is thus very efficient. Note that we cannot say that this algorithm
“computes” the Fourier transform, since the transform is stored in the amplitudes of the
state, and as mentioned earlier, quantum mechanics give no way to “read out” the ampli-
tudes per se. The only way to get information from a quantum state is by measuring it,
which yields a single basis state with probability that is related to its amplitude. This is
hardly representative of the entire fourier transform vector, but sometimes (as is the case
in Shor’s algorithm) this is enough to get highly non-trivial information, which we do not
know how to obtain using classical (non-quantum) computers.

10.6.1 The Fourier transform over ZM

We now define the Fourier transform over ZM (the group of integers in {0, . . . , M − 1} with
addition modulo M). We give a definition that is specialized to the current context. For
more discussion on the Fourier transform, a tool that has found numerous uses in complexity
theory, see Chapter 22.

Definition 10.16 For every vector f ∈ CM , the Fourier transform of f is the vector f̂ where
the xth coordinate of f̂ is7

f̂(x) = 1√
M

∑

y∈ZM

f(x)ωxy ,

7In the context of Fourier transform it is customary and convenient to denote the xth coordinate of a
vector f by f(x) rather than fx.

10.6 Shor’s algorithm: integer factorization using quantum computers 193

where ω = e2πi/M . ♦
The Fourier transform is simply a representation of f in the Fourier basis {χx}x∈ZM

,

where χx is the vector/function whose yth coordinate is 1√
Mωxy

. Now the inner product of

any two vectors χx, χz in this basis is equal to

〈χx, χz〉 = 1
M

∑

y∈ZM

ωxyωzy = 1
M

∑

y∈ZM

ω(x−z)y .

But if x = z then ω(x−z) = 1 and hence this sum is equal to 1. On the other hand, if x 6= z,

then this sum is equal to 1
M

1−ω(x−y)M

1−ωx−y = 1
M

1−1
1−ωx−y = 0 using the formula for the sum of a

geometric series. In other words, this is an orthonormal basis which means that the Fourier
transform map f 7→ f̂ is a unitary operation.

What is so special about the Fourier basis? For one thing, if we identify vectors in CM

with functions mapping ZM to C, then it’s easy to see that every function χ in the Fourier
basis is a homomorphism from ZM to C in the sense that χ(y + z) = χ(y)χ(z) for every
y, z ∈ ZM . Also, every function χ is periodic in the sense that there exists r ∈ ZM such that
χ(y + r) = χ(z) for every y ∈ ZM (indeed if χ(y) = ωxy then we can take r to be `/x where
` is the least common multiple of x and M). Thus, intuitively, if a function f : ZM → C
is itself periodic (or roughly periodic) then when representing f in the Fourier basis, the
coefficients of basis vectors with periods agreeing with the period of f should be large, and
so we might be able to discover f ’s period from this representation. This does turn out to
be the case, and is a crucial point in Shor’s algorithm.

Fast Fourier Transform.

Denote by FTM the operation that maps every vector f ∈ CM to its Fourier transform
f̂ . The operation FTM is represented by an M × M matrix whose (x, y)th entry is ωxy.
The trivial algorithm to compute it takes M2 operations. The famous Fast Fourier Trans-
form (FFT) algorithm computes the Fourier transform in O(M log M) operations. We now
sketch the idea behind this algorithm as the same idea will be used in the quantum Fourier
transform algorithm described in Section 10.6.2.

Note that

f̂(x) = 1√
M

∑

y∈ZM

f(y)ωxy =

1√
M

∑

y∈ZM ,y even

f(y)ω−2x(y/2) + ωx 1√
M

∑

y∈ZM ,y odd

f(y)ω2x(y−1)/2 .

Now since ω2 is an M/2th root of unity and ωM/2 = −1, letting W be the M/2 × M/2
diagonal matrix with diagonal entries ω0, . . . , ωM/2−1, we get that

FTM (f)low = FTM/2(feven) + WFTM/2(fodd) (5)

FTM (f)high = FTM/2(feven) − WFTM/2(fodd) (6)

where for an M -dimensional vector v, we denote by veven (resp. vodd) the M/2-dimensional
vector obtained by restricting v to the coordinates whose indices have least significant bit
equal to 0 (resp. 1) and by vlow (resp. vhigh) the restriction of v to coordinates with most
significant bit 0 (resp. 1).

Equations (5) and (6) are the crux of the divide-and-conquer idea of the FFT algorithm,
since they allow to replace a size-M problem with two size-M/2 subproblems, leading to
a recursive time bound of the form T (M) = 2T (M/2) + O(M) which solves to T (M) =
O(M log M).

10.6.2 Quantum Fourier Transform over ZM

The quantum Fourier transform is an algorithm to change the state of a quantum register
from f ∈ CM to its Fourier transform f̂ .

194 10 Quantum Computation

Lemma 10.17 (Quantum Fourier Transform [BV93])
For every m and M = 2m there is a quantum algorithm that uses O(m2) elementary
quantum operations and transforms a quantum register in state f =

∑

x∈Zm
f(x) |x〉 into

the state f̂ =
∑

x∈ZM
f̂(x) |x 〉, where f̂(x) = 1√

M

∑

y∈Zm
ωxyf(x).

Proof: The crux of the algorithm is Equations (5) and (6), which allow the problem of
computing FTM , the problem of size M , to be split into two identical subproblems of size
M/2 involving computation of FTM/2, which can be carried out recursively using the same
elementary operations. (Aside: Not every divide-and-conquer classical algorithm can be
implemented as a fast quantum algorithm; we are really using the structure of the problem
here.)

Quantum Fourier Transform FTM

Initial state: f =
∑

x∈ZM
f(x) |x 〉

Final state: f̂ =
∑

x∈ZM
f̂(x) |x 〉.

Operation State (neglecting normalizing factors)

f =
∑

x∈ZM
f(x) |x 〉

Recursively run FTM/2 on m−1 most signif-
icant qubits

(FTM/2feven) |0 〉 + (FTM/2fodd) |1 〉

If LSB is 1 then compute W on m − 1 most
significant qubits (see below).

(FTM/2feven) |0 〉 + (WFTM/2fodd) |1 〉

Apply Hadmard gate H to least significant
qubit.

(FTM/2feven)(|0 〉 + |1 〉) +
(WFTM/2fodd)(|0 〉 − |1 〉) =

(FTM/2feven + WFTM/2fodd) |0 〉 +
(FTM/2feven − WFTM/2fodd) |1 〉

Move LSB to the most significant position |0 〉(FTM/2feven + WFTM/2fodd) +

|1 〉(FTM/2feven − WFTM/2fodd) = f̂

The transformation W on m − 1 qubits can be defined by |x 〉 7→ ωx = ω
∑m−2

i=0 2ixi

(where xi is the ith qubit of x). It can be easily seen to be the result of applying for
every i ∈ {0, . . . , m − 2} the following elementary operation on the ith qubit of the register:

|0 〉 7→ |0 〉 and |1〉 7→ ω2i |1〉.
The final state is equal to f̂ by (5) and (6). (We leave verifying this and the running

time to Exercise 10.14.) �

10.6.3 Shor’s Order-Finding Algorithm.

We now present the central step in Shor’s factoring algorithm: a quantum polynomial-time
algorithm to find the order of an integer A modulo an integer N .

Lemma 10.18 There is a polynomial-time quantum algorithm that on input A, N (repre-
sented in binary) finds the smallest r such that Ar = 1 (mod N). ♦

Proof: Let m = d5 logMe and let M = 2m. Our register will consist of m + polylog(N)
qubits. Note that the function x 7→ Ax (mod N) can be computed in polylog(N) time
(see Exercise 10.10) and so we will assume that we can compute the map |x〉 |y 〉 7→
|x〉 |y ⊕ xA

x (mod N)y 〉 (where xXy denotes the representation of the number X ∈ {0, . . . , N − 1}
as a binary string of length log N).8 Now we describe the order-finding algorithm. It uses a
tool of elementary number theory called continued fractions which allows us to approximate

8To compute this map we may need to extend the register by some additional polylog(N) many qubits,
but we can ignore them as they will always be equal to zero except in intermediate computations.

10.6 Shor’s algorithm: integer factorization using quantum computers 195

(using a classical algorithm) an arbitrary real number α with a rational number p/q where
there is a prescribed upper bound on q (see Section 10.6.5).

Order finding algorithm.

Goal: Given numbers N and A < N such that gcd(A,N) = 1, find the smallest r such that Ar = 1
(mod N).

Quantum register: We use an m + polylog(N)-qubit register, where m = d5 log Ne. Below we
treat the first m bits of the register as encoding a number in ZM .

Operation State (including normalizing factors)

Apply Fourier transform to the first m bits. 1√
M

∑

x∈ZM
|x 〉) |0n 〉

Compute the transformation |x 〉 |y 〉 7→
|x 〉 |y ⊕ (Ax (mod N)) 〉.

1√
M

∑

x∈ZM
|x 〉 |Ax (mod N) 〉

Measure the second register to get a value y0.
1√
K

∑K−1
`=0 |x0 + `r 〉 |y0 〉 where x0 is the smallest

number such that Ax0 = y0 (mod N) and K =
b(M − 1 − x0)/rc.

Apply the Fourier transform to the first register. 1√
M

√
K

(

∑

x∈Zn

∑K−1
`=0 ω(x0+`r)x |x 〉

)

|y0 〉
Measure the first register to obtain a number x ∈ ZM . Find a rational approximation a/b with a, b
coprime and b ≤ N that approximates the number x

M
within 1/(10M) accuracy (see Section 10.6.5).

If found such approximation and Ab = 1 (mod N) then output b.

In the analysis, it will suffice to show that this algorithm outputs the order r with probability
at least Ω(1/ logN) (we can always amplify the algorithm’s success by running it several
times and taking the smallest output).

Analysis: the case that r|M
We start by analyzing the algorithm in the case that M = rc for some integer c. Though
very unrealistic (remember that M is a power of 2!) this gives the intuition why Fourier
transforms are useful for detecting periods.

claim: In this case the value x measured will be equal to ac for a random a ∈ {0, . . . , r − 1}.

The claim concludes the proof since it implies that x/M = a/r where a is random integer
less than r. Now for every r, at least Ω(r/ log r) of the numbers in [r − 1] are co-prime to
r. Indeed, the prime number theorem (see Section A.3 in the appendix) says that there
at least this many primes in this interval, and since r has at most log r prime factors, all
but log r of these primes are co-prime to r. Thus, when the algorithm computes a rational
approximation for x/M , the denominator it will find will indeed be r.

To prove the claim, we compute for every x ∈ ZM the absolute value of |x 〉’s coefficient
before the measurement. Up to some normalization factor this is

∣

∣

∣

∣

∣

c−1
∑

`=0

ω(x0+`r)x

∣

∣

∣

∣

∣

=
∣

∣

∣ωx0c′c
∣

∣

∣

∣

∣

∣

∣

∣

c−1
∑

`=0

ωr`x

∣

∣

∣

∣

∣

= 1 ·
∣

∣

∣

∣

∣

c−1
∑

`=0

ωr`x

∣

∣

∣

∣

∣

. (7)

If c does not divide x then ωr is a cth root of unity, so
∑c−1

`=0 wr`x = 0 by the formula
for sums of geometric progressions. Thus, such a number x would be measured with zero
probability. But if x = cj then ωr`x = wrcj` = ωMj = 1, and hence the amplitudes of all
such x’s are equal for all j ∈ {0, 2, . . . , r − 1}. �

The general case

In the general case, where r does not necessarily divide M , we will not be able to show that
the measured value x satisfies M |xr. However, we will show that with Ω(1/ log r) probability,
(1) xr will be “almost divisible” by M in the sense that 0 ≤ xr (mod M) < r/10 and (2)
bxr/Mc is coprime to r. Condition (1) implies that |xr − cM | < r/10 for c = bxr/Mc.

196 10 Quantum Computation

1

i

β=eiθ

1-β

βk=eiθk

θ
(k-1)θ

1-βk

α
α/2

α/2

1

1

s
in

(α
/2

)
s
in

(α
/2

)

Figure 10.6 A complex number z = a + ib can be thought of as the two-dimensional vector
(a, b) of length |z| =

√
a2 + b2. The number β = eiθ corresponds to a unit vector of angle

θ from the x axis.For any such β, if k is not too large (say k < 1/θ) then by elementary

geometric considerations |1−βk|
|1−β| = 2 sin(θ/2)

2 sin(kθ/2)
. We use here the fact (proved in the dotted

box above) that in a unit cycle, the chord corresponding to an angle α is of length 2 sin(α/2).

Dividing by rM gives
∣

∣

x
M − c

r

∣

∣ < 1
10M . Therefore, c

r is a rational number with denominator
at most N that approximates x

M to within 1/(10M) < 1/(4N4). It is not hard to see that
such an approximation is unique (Exercise 10.11) and hence in this case the algorithm will
come up with c/r and output the denominator r (see Section 10.6.5).

Thus all that is left is to prove the next two lemmas. The first shows that there are
Ω(r/ log r) values of x that satisfy the above two conditions and the second shows that each
is measured with probability Ω((1/

√
r)2) = Ω(1/r).

Lemma 10.19 There exist Ω(r/ log r) values x ∈ ZM such that:

1. 0 < xr (mod M) < r/10

2. bxr/Mc and r are coprime ♦

Lemma 10.20 If x satisfies 0 < xr (mod M) < r/10 then, before the measurement in the
final step of the order-finding algorithm, the coefficient of |x 〉 is at least Ω(1√

r
). ♦

Proof of Lemma 10.19: We prove the lemma for the case that r is coprime to M ,
leaving the general case as Exercise 10.15. In this case, the map x 7→ rx (mod M) is a
permutation of Z∗

M . There are at least Ω(r/ log r) numbers in [1..r/10] that are coprime
to r (take primes in this range that are not one of r’s at most log r prime factors) and
hence Ω(r/ log r) numbers x such that rx (mod M) = xr − bxr/McM is in [1..r/10] and
coprime to r. But this means that brx/Mc can not have a nontrivial shared factor with r,
as otherwise this factor would be shared with rx (mod M) as well. �

Proof of Lemma 10.20: Let x be such that 0 < xr (mod M) < r/10. The absolute
value of |x 〉’s coefficient in the state before the measurement is

1√
K

√
M

∣

∣

∣

∣

∣

K−1
∑

`=0

ω`rx

∣

∣

∣

∣

∣

, (8)

where K = b(M − x0 − 1)/rc. Note that M
2r < K < M

r since x0 < N � M .
Setting β = ωrx (note that since M 6 |rx, β 6= 1) and using the formula for the sum of a

geometric series, this is at least

√
r

2M

∣

∣

∣

1−βdM/re

1−β

∣

∣

∣ =
√

r
2M

sin(θdM/re/2)
sin(θ/2) , (9)

where θ = rx (mod M)
M is the angle such that β = eiθ (see Figure 10.6 for a proof by picture

of the last equality). Under our assumptions dM/re θ < 1/10 and hence (using the fact that

sin α ∼ α for small angles α), the coefficient of x is at least
√

r
4M dM/re ≥ 1

8
√

r
�

This completes the proof of Lemma 10.18 �

10.6 Shor’s algorithm: integer factorization using quantum computers 197

10.6.4 Reducing factoring to order finding.

The reduction of the factoring problem to the order-finding problem is classical (in partic-
ular, predates quantum computing) and follows from the following two Lemmas:

Lemma 10.21 For every nonprime N that is not a prime power, the probability that a ran-
dom X in the set Z∗

N = {X ∈ [N − 1] : gcd(X, N) = 1} has an even order r and furthermore,
Xr/2 6= −1 (mod N) is at least 1/4. ♦

Lemma 10.22 For every N and Y , if Y 2 = 1 (mod N) but Y (mod N) 6∈ {+1,−1} then
gcd(Y − 1, N) 6∈ 1, N . ♦

Together, lemmas 10.21 and 10.22 show that given a composite N that is not a prime
power if we choose A at random in [N − 1] then with good probability either gcd(A, N)
or gcd(Ar/2 − 1, N) will yield a non-trivial factor F of N . We can then use recursion to
find the prime factors of F and N/F respectively, leading to a polylog(N) time factorization
algorithm. (Note that if N is a prime power then it is easy to find its factorization by simply
going over all ` ∈ [log N] and trying the `th root of N .) Thus to prove Theorem 10.15 all
that is left is to prove lemmas 10.21 and 10.22. The proofs rely on some basic facts from
number theory; see Section A.3 in the Appendix for a quick review.

Proof of Lemma 10.22: Under our assumptions, N divides Y 2 − 1 = (Y − 1)(Y + 1)
but does not divide neither Y − 1 or Y + 1. But this means that gcd(Y − 1, N) > 1 since
if Y − 1 and N were coprime, then since N divides (Y − 1)(Y + 1), it would have to divide
Y + 1 (Exercise 10.12). Since Y − 1 < N , obviously gcd(Y − 1, N) < N and hence we’re
done. �

Proof of Lemma 10.21: We prove the lemma for the case N = PQ for primes P, Q: the
proof can be suitably generalized for every N . Now, by the Chinese Remainder Theorem
every X ∈ Z∗

N is isomorphic to the pair 〈X (mod P), X (mod Q)〉. In particular, choosing
a random number X ∈ Z∗

N is equivalent to choosing two random numbers Y, Z in Z∗
P and Z∗

Q

respectively and setting X to be the unique number corresponding to the pair 〈Y, Z〉. Now
for every k, Xk (mod N) is isomorphic to 〈Y k (mod P), Zk (mod Q)〉 and so the order of
X is the least common multiple of the orders of Y and Z modulo P and Q respectively. We
will complete the proof by showing that with probability at least 1/2, the order of Y is even:
a number of the form 2kc for k ≥ 1 and c odd. We then show that with probability at least
1/2, the order of Z has the form 2`d for d odd and ` 6= k. This implies that the order of X
is r = 2max{k,`}lcm(c, d) (where lcm denotes the least common multiple) which, means that
Xr/2 will be equal to 1 in at least one coordinate. Since −1 (mod N) is isomorphic to the
tuple 〈−1,−1〉 this means that Xr/2 6= −1 (mod P).

Thus all that is left is to prove the following:

• Y has even order with probability at least 1/2.

Indeed, the set of numbers in Z∗
P with odd order is a subgroup of Z∗

P : if Y, Y ′ have

odd orders r, r′ respectively then (Y Y ′)rr′

= 1 (mod P), which means that the order
of Y Y ′ divides the odd number rr′. Yet −1 has even order, implying that this is a
proper subgroup of Z∗

P , taking at most 1/2 of Z∗
P .

• There is a number `0 such that with probability exactly 1/2, the order of of a random
Z ∈ Z∗

Q is a number of the form 2`c for ` ≤ `0. (This implies that for every fixed k,

the probability that the order has the form 2kd is at most 1/2.)

For every `, define G` to be the subset of Z∗
Q whose order modulo Q is of the form

2jc where j ≤ ` and c is odd. It can be verified that for every `, G` is a subgroup
of G`+1 and furthermore, because modulo a prime P the mapping x 7→ x2 (mod P)
is two-to-one and maps G`+1 into G` (Exercise 10.13), |G`| ≥ |G`+1|/2. It follows
that if we take `0 to be the largest such that G`0 is a proper subgroup of Z∗

P , then
|G`0 | = |Z∗

P |/2.

�

198 10 Quantum Computation

10.6.5 Rational approximation of real numbers

In many settings, including Shor’s algorithm, we are given a real number in the form of a
program that can compute its first t bits in poly(t) time. We are interested in finding a
close approximation to this real number of the form a/b, where there is a prescribed upper
bound on b. Continued fractions is a tool in number theory that is useful for this.

A continued fraction is a number of the following form:

a0 +
1

a1 + 1

a2+
1

a3+...

for a0 a non-negative integer and a1, a2, . . . positive integers.
Given a real number α > 0, we can find its representation as an infinite fraction as

follows: split α into the integer part bαc and fractional part α − bαc, find recursively the
representation R of 1/(α − bαc), and then write

α = bαc +
1

R
.

If we continue this process for n steps, we get a rational number, denoted by [a0, a1, . . . , an],
which can be represented as pn

qn
with pn, qn coprime. The following facts can be proven using

induction:

• p0 = a0, q0 = 1 and for every n > 1, pn = anpn−1 + pn−2, qn = anqn−1 + qn−2.

•
pn

qn
− pn−1

qn−1
= (−1)n−1

qnqn−1

Furthermore, it is known that

∣

∣

∣

pn

qn
− α

∣

∣

∣< 1
qnqn+1

, (10)

which implies that pn

qn
is the closest rational number to α with denominator at most qn. It

also means that if α is extremely close to a rational number, say,
∣

∣α − a
b

∣

∣ < 1
4b4 for some

coprime a, b then we can find a, b by iterating the continued fraction algorithm for polylog(b)
steps. Indeed, let qn be the first denominator such that qn+1 ≥ b. If qn+1 > 2b2 then (10)
implies that

∣

∣

pn

qn
−α

∣

∣ < 1
2b2 . But this means that pn

qn
= a

b since there is at most one rational

number of denominator at most b that is so close to α. On the other hand, if qn+1 ≤ 2b2

then since pn+1

qn+1
is closer to α than a

b ,
∣

∣

pn+1

qn+1
− α

∣

∣ < 1
4b4 , again meaning that pn+1

qn+1
= a

b . It’s

not hard to verify that qn ≥ 2n/2, implying that pn and qn can be computed in polylog(qn)
time.

10.7 BQP and classical complexity classes

What is the relation between BQP and the classes we already encountered such as P,
BPP and NP? This is very much an open questions. It not hard to show that quantum
computers are at least not infinitely powerful compared to classical algorithms:

Theorem 10.23 BQP ⊆ PSPACE ♦

Proof Sketch: To simulate a T -step quantum computation on an m qubit register,
we need to come up with a procedure Coeff that for every i ∈ [T] and x ∈ {0, 1}m, the
xth coefficient (up to some accuracy) of the register’s state in the ith execution. We can
compute Coeff on inputs x, i using at most 8 recursive calls to Coeff on inputs x′, i − 1
(for the at most 8 strings that agree with x on the three bits that the Fi’s operation reads
and modifies). Since we can reuse the space used by the recursive operations, if we let S(i)

10.7 BQP and classical complexity classes 199

denote the space needed to compute Coeff(x, i) then S(i) ≤ S(i− 1) + O(`) (where ` is the
number of bits used to store each coefficient).

To compute, say, the probability that if measured after the final step the first qubit of
the register is equal to 1, just compute the sum of Coeff(x, T) for every x ∈ {0, 1}n

. Again,
by reusing the space of each computation this can be done using polynomial space. �

In Exercise 17.7 later in the book you are asked to improve Theorem 10.23 to show that
BQP ⊆ P#P (where #P is the counting version of NP described in Chapter 17). One can
even show show BQP ⊆ PP [ADH97] (see Definition 17.6). But these are essentially the
best bounds we know on BQP.

Does BQP = BPP? The main reason to believe this is false is the polynomial-time
quantum algorithm for integer factorization, whereas no similar algorithm is believed to
exist for probabilistic computation. Although this is not as strong as the evidence for, say
NP * BPP (after all NP contains thousands of well-studied problems that have resisted
efficient algorithms), the factorization problem is one of the oldest and most well-studied
computational problems, and the fact that we still know no efficient algorithm for it makes
the conjecture that none exists appealing. Also note that unlike other famous problems
that eventually found an algorithm (e.g., linear programming [Kha79] and primality testing
[AKS04]), we do not even have a heuristic algorithm that is conjectured to work (even
without proof) or experimentally works on, say, numbers that are product of two random
large primes.

What is the relation between BQP and NP? It seems that quantum computers only
offer a quadratic speedup (using Grover’s search) on NP-complete problems. There are
also oracle results showing that NP problems require exponential time on quantum com-
putersl [BBBV97]. So most researchers believe that NP * BPP. On the other hand, there
is a problem in BQP (the Recursive Fourier Sampling or RFS problem [BV93]) that is not
known to be in the polynomial-hierarchy, let alone in NP. Thus it seems that BQP and
NP may be incomparable classes.

10.7.1 Quantum analogs of NP and AM

Can we define an analog of NP in the quantum computing world? The class NP was
defined using the notion of a certificate that is checked by a deterministic polynomial-time
(classical) TM. However, quantum computation includes probabilistic classical computation
as a subcase. Therefore the correct classical model to look at is the one where the certificate
is verified by a polynomial-time randomized algorithm, namely, MA (see Definition 8.10).
Thus the quantum analog of NP is denoted by QMA. More generally, one can define
quantum interactive proofs, which generalize the definition of AM[k]. These turn out to be
surprisingly powerful. Three-round quantum interactive proofs suffice to capture PSPACE,
as shown by Watrous [Wat03]. If the same were true of classical interactive proofs, then PH
would collapse.

A “Quantum Cook-Levin Theorem” was proven by Kitaev (unpublished, see Umesh
Vazirani’s lecture notes, which are linked from this book’s website). This shows that a
quantum analog of 3SAT, called Q 5SAT, is complete for QMA. In this problem are given
m elementary quantum operations H1, H2, . . . , Hm on an n-bit quantum register. Each
operation acts upon only 5 bits of the register (and hence is represented by a 25×25 matrix,
which implicitly defines a 2n × 2n matrix). Let H be the 2n × 2n matrix

∑

j Hj . We are
promised that either all eigenvalues of H are ≥ b or there is an eigenvalue of H that is ≤ a
where 0 ≤ a ≤ b ≤ 1 and b− a is at least 1/nc where c is a constant. We have to determine
which case holds.

The reader could try to prove this completeness result as an exercise. As a warmup, first
show how to reduce 3SAT to Q 5SAT.

200 10 Quantum Computation

Chapter notes and history

Since a quantum computer is reversible (Lemma 10.7), an important precursor of quantum com-
puting was a field called reversible computing [Ben87], which seeks to find thermodynamic limits
to the speed of classical computers. Toffoli’s gate was invented in that context.

In 1982, Feynman [Fey82] pointed out that there seems to be no efficient simulation of quantum
mechanics on classical Turing machines, and suggested that building quantum computers might
allow us to run such simulations. (In fact, this still might be their most important application if
they are ever built.) He also raised the possibility that quantum TMs may have more computational
power than classical TMs. In 1985 Deutsch [Deu85] formally defined a quantum Turing machine,
though in retrospect his definition is unsatisfactory. Better definitions then appeared in Deutsch-
Josza [DJ92] and Bernstein-Vazirani [BV93]. The latter paper was the first to demonstrate the
existence of a universal quantum TM that can simulate all other quantum TMs with only polynomial
slowdown. Yao [Yao93] generalized these results to quantum circuits, and our definition of quantum
computation follows Yao. (The Bernstein-Vazirani quantum TM model is known to be less noise-
tolerant than the circuit model, and thus less likely to be realized.) Deutsch [Deu89] showed that a
certain 3-qubit gate is universal for quantum circuits, while Solovay (unpublished manuscript, 1995)
and, independently, Kitaev [Kit97], showed that universal gates can approximate every unitary
matrix with precision exponentially small in the number of gates, yielding Theorem 10.12 (though
we stated it with a particular universal basis mentioned in the book [NC00]).

Bernstein and Vazirani also introduced the quantum algorithm for computing the fourier trans-
form, and gave evidence that it provides superpolynomial speedups over classical algorithms. The
papers of Simon and Shor gave further evidence along these lines, and in particular Shor’s paper
caught the imagination of the scientific world, as well as of governments worldwide (who now feared
for the security of their cryptosystems).

Quantum computation has a fascinating connection with cryptography. On the one hand,
if quantum computers are ever built then Shor’s algorithm and various generalizations thereof
could be used to completely break the security of RSA and all other factoring or discrete-log
based cryptosystems. On the other hand, it turns out that using quantum mechanics and the
ideas underlying the EPR/Bell “paradox”, it is possible to have unconditionally secure public key
cryptography, a concept known as quantum key distribution [BB84] and more generally as quantum

cryptography. That is, these cryptosystem are secure against even computationally unbounded
adversaries. In fact, constructing these systems does not require the full-fledged power of quantum
computers, and prototype implementations already exist. Still, there are very significant engineering
challenges and issues that can compromise the real-world applicability and security of these systems.
One should note however that even if quantum computers are built, it may very well be possible
to still have conventional computational cryptography that is resistant even to polynomial-time
quantum algorithms. For example, as far as we know quantum computers can at best invert one-
way functions (Definition 9.4) quadratically faster than classical algorithms (using Grover’s search).
Thus, most researchers believe that private key cryptography (including even digital signatures!)
will be just as resistant against quantum computers as it is against “classical” Turing machines.
Even for public key cryptography, there are (few) candidates systems that are based on problems
not known to have efficient quantum algorithms. Perhaps the most promising direction is basing
such schemes on certain problems on integer lattices (see the notes for Chapter 9).

Grover’s and Simon’s algorithm actually operate in a more general model known as the quantum

black-box model, in which an algorithm is given black-box access to an oracle computing the unitary
transformation |x 〉 |y 〉 7→ |x 〉 |y ⊕ f(x) 〉 for some function f and tries to discover properties of f .
There have been interesting upper bounds and lower bounds on the power of such algorithms.
In particular, we know that Grover’s algorithm is optimal in this model [BBBV97]. We also have
several other “Grover-like” algorithms in this model; see the survey [Amb04]. One can view Grover’s
algorithm as evaluating an OR over N = 2n-variables. Thus a natural question is whether it can
be generalized into more general formulae; a particularly interesting special case is AND-OR trees
(i.e., OR of ANDs of ORs ...) that arise in various applications such game strategies. This was
question was open for a while, and in particular we didn’t know if quantum algorithms can beat
the best randomized algorithm for the full binary balanced AND-OR tree, which needs to look at

O(N log(
1+

√
33

4
)) = O(N0.753..) variables [Sni81, SW86]. In a recent breakthrough, Farhi, Goldstone

and Gutmann [FGG07] showed an O(N1/2+o(1))-time quantum algorithm for this problem, a result
that was generalized by Ambainis et al [ACR+07] to hold for all AND-OR trees.

Research on quantum computing has generated some interesting insights on both “classical”
computational complexity, and “non-computational” physics. A good example for a result of the
first kind is the paper of Aharonov and Regev [AR04], that uses quantum insights to show a classical

Exercises 201

computational complexity result (that a
√

n-approximation of the lattice shortest vector problem
is in coNP). Examples for the results of the second kind include the works on quantum error
correction (see below) and results on adiabatic computation [AvDK+04, AGIK07, vDMV01], that
clarified this model and refuted some of the physicists’ initial intuitions about it.

The chapter did not discuss the issue of quantum error correction, which tackles the following
important issue: how can we run a quantum algorithm when at every possible step there is a
probability of noise interfering with the computation? The issue is undoubtedly crucial, since an
implementation of Shor’s algorithms for interesting values of N requires hundreds of thousands of
particles to stay in quantum superposition for large-ish periods of time. Thus far it is an open
question whether this is practically achievable. Physicists’ original intuition was that noise and
decoherence will make quantum computing impractical; one obstacle cited was the no-cloning theo-

rem [WZ82], which seems to rule out use of classical error-correction ideas in quantum computing.
However, Shor’s followup paper on quantum error correction [Sho95] contradicted this intuition
and spurred much additional work. We now know that under reasonable noise models, so long as
the probability of noise at a single step is lower than some constant threshold, one can perform
arbitrarily long computations and get the correct answer with high probability; see the articles by
Preskill [Pre97, Pre98]. Unfortunately, there are no estimates of the true noise rate in physical
systems.

In fact it is unclear what the correct model of noise should be; this question is related to
the issue of what is the reality underlying the quantum description of the world. Though the
theory has had fantastic success in predicting experimental results (which perhaps is the criteria
by which a physical theory is judged), some physicists are understandably uncomfortable with the
description of nature as maintaining a huge array of possible states, and changing its behavior when
it is observed. The popular science book [Bru04] contains a good (even if a bit biased) review of
physicists’ and philosophers’ attempts at providing more palatable descriptions that still manage
to predict experiments.

On a more technical level, while no one doubts that quantum effects exist at microscopic scales,
scientists question why they do not manifest themselves at the macrosopic level (or at least not to
human consciousness). Physicist Penrose [Pen90] has gone so far as to make a (highly controversial)
suggestion about a link between human consciousness and the collapse of the probability wave. A
Scientific American article by Yam [Yam97] describes various other explanations that have been
advanced over the years, including decoherence (which uses quantum theory to explain the absence
of macroscopic quantum effects) and hidden variable theories (which restore a deterministic order
to world). No single explanation seems to please all researchers.

Finally, we note that since qubits are such a simple example of a quantum system, there is a
growing movement to teach quantum mechanics using qubits and quantum computing rather than,
say, the standard model of the hydrogen atom or electron-in-a-box. This is an interesting example
of how the computational worldview (as opposed to computation in the sense of number-crunching)
is seeping into the sciences.

For details of these and many other topics in quantum computing and information, see the books
by Kitaev, Shen, and Vyalyi [KVS02] and Nielsen and Chuang [NC00]. Some excellent lecture notes
and surveys can be found on the home pages of Umesh Vazirani and Scott Aaronson. Aaronson’s
Scientific American article [Aar08] provides an excellent popular-science exposition of the field.

Exercises

10.1 Show a quantum strategy that enables Alice and Bob to win the parity game of theorems 10.3
and 10.4 with probability 0.85.

10.2 Prove Claim 10.5. H454

10.3 For each one of the following operations: Hadamard, NOT, controlled-NOT, rotation by π/4, and
Toffoli, write down the 8×8 matrix that describes the mapping induced by applying this operation
on the first qubits of a 3-qubit register.

10.4 Define a linear function F : R
2m → R

2m

to be an elementary probabilistic operation if it satisfies
the following conditions:

• F is stochastic: that is, for every v ∈ Rm such that
∑

x vx = 1,
∑

x(Av)x = 1.

• F depends on at most three bits. That is, there is a linear function G : R
23 → R

23

and three

202 10 Quantum Computation

coordinates i < j < k ∈ [m] such that for every vector of the form |x1x2 · · ·xm 〉,

F |x1 · · ·xm 〉 =
∑

a,b,c∈{0,1}
(G |xixjxk 〉)abc |x1..xi−1axi+1..xj−1bxj+1...xk−1cxk+1..xm 〉 .

Let f : {0, 1}∗ → {0, 1} and T : N → N be some functions. We say that f is computable in
probabilistic T (n)-time if for every n ∈ N and x ∈ {0, 1}n, f(x) can be computed by the following
process:

(a) Initialize an m bit register to the state
∣

∣x0n−m 〉 (i.e., x padded with zeroes), where m ≤ T (n).

(b) Apply one after the other T (n) elementary operations F1, . . . , FT to the register (where we

require that there is a polynomial-time TM that on input 1n, 1T (n) outputs the descriptions
of F1, . . . , FT).

(c) Measure the register and let Y denote the obtained value. (That is, if v is the final state of
the register, then Y is a random variable that takes the value y with probability vy for every
y ∈ {0, 1}n.)

We require that the first bit of Y is equal to f(x) with probability at least 2/3.

Prove that a function f : {0, 1}∗ → {0, 1} is computable in p(n)-probabilistic p(n)-time per the
above definition for some polynomial p iff f ∈ BPP.

10.5 Prove that if f ∈ BQP then f has a quantum polynomial-time algorithm in which all of the matrices
are real— contain no numbers of the form a + ib for b 6= 0. (This exercise can be thought of as
showing that the power of quantum mechanics as opposed to classical probabilistic computation
comes from the fact that we allow negative numbers in state representations, and not from the fact
that we allow complex numbers.)

H454

10.6 Suppose that a two-qubit quantum register is in an arbitrary state v. Show that the following three
experiments will yield the same probability of output:

(a) Measure the register and output the result.

(b) First measure the first qubit and output it, then measure the second qubit and output it.

(c) First measure the second qubit and output it, then measure the first qubit and output it.

10.7 Suppose that f is computed in T time by a quantum algorithm that uses a partial measurements
in the middle of the computation, and then proceeds differently according to the result of that
measurement. Show that f is computable by O(T) elementary operations.

10.8 Show that in a quantum computation that runs for T steps, we can replace each gate with any
other gate (i.e., 8× 8 matrix) which is the same in the 10 log T most significant bits. Show that the
amplitudes in the resulting final states are the same in the first T bits.

10.9 Prove that if for some a ∈ {0, 1}n, the strings y1, . . . , yn−1 are chosen uniformly at random from
{0, 1}n subject to yi � a = 0 for every i ∈ [n − 1], then with probability at least 1/10, there exists
no nonzero string a′ 6= a such that yi � a′ = 0 for every i ∈ [n − 1]. (In other words, the vectors
y1, . . . , yn−1 are linearly independent.)

10.10 Prove that given A,x ∈ {0, . . . , M − 1}, we can compute (using a classical TM!) Ax (mod M) in
time polynomial in log M . H454

10.11 Prove that for every α < 1, there is at most a single rational number a/b such that b < N and
|α − a/b| < 1/(2N2).

10.12 Prove that if A, B are numbers such that N and A are coprime but N divides AB, then N divides
B. H454

10.13 Complete the proof of Lemma 10.21:

(a) Prove that for every prime P , the map x 7→ x2 (mod P) is two-to-one on Z
∗
P .

(b) Prove that if X’s order modulo P is of the form 2jc for some j ≥ 1 and odd c, then the order
of X2 is of the form 2j−1c′ for odd c′.

(c) Complete the proof of Lemma 10.21 for an arbitrary composite N that is not a prime power.

10.14 Prove Lemma 10.17.

10.15 Complete the proof of Lemma 10.19 for the case that r and M are not coprime. That is, prove
that also in this case there exist at least Ω(r/ log r) values x’s such that 0 ≤ rx (mod M) ≤ r/2
and dM/xe and r are coprime. H454

10.16 (Uses knowledge of continued fractions) Suppose j, r ≤ N are mutually coprime and unknown to
us. Show that if we know the first 2 log N bits of j/r then we can recover j, r in polynomial time.

