
DRAFT

i

Computational Complexity: A Modern
Approach

Draft of a book: Dated January 2007
Comments welcome!

Sanjeev Arora and Boaz Barak
Princeton University

complexitybook@gmail.com

Not to be reproduced or distributed without the authors’ permission

This is an Internet draft. Some chapters are more finished than others. References and
attributions are very preliminary and we apologize in advance for any omissions (but hope you

will nevertheless point them out to us).

Please send us bugs, typos, missing references or general comments to
complexitybook@gmail.com — Thank You!!

DRAFT

ii

DRAFT

Chapter 9

Complexity of counting

“It is an empirical fact that for many combinatorial problems the detection of the
existence of a solution is easy, yet no computationally efficient method is known
for counting their number.... for a variety of problems this phenomenon can be
explained.”
L. Valiant 1979

The class NP captures the difficulty of finding certificates. However, in many contexts, one is
interested not just in a single certificate, but actually counting the number of certificates. This
chapter studies #P, (pronounced “sharp p”), a complexity class that captures this notion.

Counting problems arise in diverse fields, often in situations having to do with estimations of
probability. Examples include statistical estimation, statistical physics, network design, and more.
Counting problems are also studied in a field of mathematics called enumerative combinatorics,
which tries to obtain closed-form mathematical expressions for counting problems. To give an
example, in the 19th century Kirchoff showed how to count the number of spanning trees in a graph
using a simple determinant computation. Results in this chapter will show that for many natural
counting problems, such efficiently computable expressions are unlikely to exist.

Here is an example that suggests how counting problems can arise in estimations of probability.

Example 9.1
In the GraphReliability problem we are given a directed graph on n nodes. Suppose we are told that
each node can fail with probability 1/2 and want to compute the probability that node 1 has a
path to n.

A moment’s thought shows that under this simple edge failure model, the remaining graph is
uniformly chosen at random from all subgraphs of the original graph. Thus the correct answer is

1
2n

(number of subgraphs in which node 1 has a path to n.)

We can view this as a counting version of the PATH problem.

Web draft 2007-01-08 22:01
Complexity Theory: A Modern Approach. © 2006 Sanjeev Arora and Boaz Barak. References and attributions are
still incomplete.

p9.1 (171)

DRAFT

p9.2 (172) 9.1. THE CLASS #P

In the rest of the chapter, we study the complexity class #P, a class containing the GraphReliability
problem and many other interesting counting problems. We will show that it has a natural and
important complete problem, namely the problem of computing the permanent of a given matrix.
We also show a surprising connection between PH and #P, called Toda’s Theorem. Along the way
we encounter related complexity classes such as PP and ⊕P.

9.1 The class #P

We now define the class #P. Note that it contains functions whose output is a natural number,
and not just 0/1.

Definition 9.2 (#P)
A function f : {0, 1}∗ → N is in #P if there exists a polynomial p : N → N and a
polynomial-time TM M such that for every x ∈ {0, 1}∗:

f(x) =
∣∣∣{y ∈ {0, 1}p(|x|) : M(x, y) = 1

}∣∣∣ .
Remark 9.3
As in the case of NP, we can also define #P using non-deterministic TMs. That is, #P consists
of all functions f such that f(x) is equal to the number of paths from the initial configuration to
an accepting configuration in the configuration graph GM,x of a polynomial-time NDTM M .

The big open question regarding #P, is whether all problems in this class are efficiently solvable.
In other words, whether #P = FP. (Recall that FP is the analog of the class P for functions
with more than one bit of output, that is, FP is the set of functions from {0, 1}∗ to {0, 1}∗
computable by a deterministic polynomial-time Turing machine. Thinking of the output as the
binary representation of an integer we can identify such functions with functions from {0, 1}∗ to N.
Since computing the number of certificates is at least as hard as finding out whether a certificate
exists, if #P = FP then NP = P. We do not know whether the other direction also holds:
whether NP = P implies that #P = FP. We do know that if PSPACE = P then #P = FP,
since counting the number of certificates can be done in polynomial space.

Here are two more examples for problems in #P:

• #SAT is the problem of computing, given a Boolean formula φ, the number of satisfying
assignments for φ.

• #CYCLE is the problem of computing, given a directed graph G, the number of simple cycles
in G. (A simple cycle is one that does not visit any vertex twice.)

Clearly, if #SAT ∈ FP then SAT ∈ P and so P = NP. Thus presumably #SAT 6∈ FP. How
about #CYCLE? The corresponding decision problem —given a directed graph decide if it has a

Web draft 2007-01-08 22:01

DRAFT

9.1. THE CLASS #P p9.3 (173)

cycle—can be solved in linear time by breadth-first-search. The next theorem suggests that the
counting problem may be much harder.

u v

1 2 m

Figure 9.1: Reducing Ham to #CYCLE: by replacing every edge in G with the above gadget to obtain G′, every
simple cycle of length ` in G becomes (2m)` simple cycles in G′.

Theorem 9.4
If #CYCLE ∈ FP, then P = NP.

Proof: We show that if #CYCLE can be computed in polynomial time, then Ham ∈ P, where Ham
is the NP-complete problem of deciding whether or not a given digraph has a Hamiltonian cycle
(i.e., a simple cycle that visits all the vertices in the graph). Given a graph G with n vertices, we
construct a graph G′ such that G has a Hamiltonian cycle iff G′ has at least nn2

cycles.
To obtain G′, replace each edge (u, v) in G by the gadget shown in Figure 9.1. The gadget

has m = n log n + 1 levels. It is an acyclic digraph, so cycles in G′ correspond to cycles in G.
Furthermore, there are 2m directed paths from u to v in the gadget, so a simple cycle of length `
in G yields (2m)` simple cycles in G′.

Notice, if G has a Hamiltonian cycle, then G′ has at least (2m)n > nn2
cycles. If G has no

Hamiltonian cycle, then the longest cycle in G has length at most n− 1. The number of cycles is
bounded above by nn−1. So G′ can have at most (2m)n−1 × nn−1 < nn2

cycles. �

9.1.1 The class PP: decision-problem analog for #P.

Similar to the case of search problems, even when studying counting complexity, we can often
restrict our attention to decision problems. The reason is that there exists a class of decision
problems PP such that

PP = P ⇔ #P = FP (1)

Intuitively, PP corresponds to computing the most significant bit of functions in #P. That is,
L is in PP if there exists a polynomial-time TM M and a polynomial p : N → N such that for
every x ∈ {0, 1}∗,

x ∈ L⇔
∣∣∣{y ∈ {0, 1}p(|x|) : M(x, y) = 1

}∣∣∣ ≥ 1
2
· 2p(|x|)

You are asked to prove the non-trivial direction of (1) in Exercise 1. It is instructive to compare
the class PP, which we believe contains problem requiring exponential time to solve, with the class
BPP, which although it has a seemingly similar definition, can in fact be solved efficiently using
probabilistic algorithms (and perhaps even also using deterministic algorithms, see Chapter 16).
Note that we do not know whether this holds also for the class of decision problems corresponding
to the least significant bit of #P, namely ⊕P (see Definition 9.13 below).

Web draft 2007-01-08 22:01

DRAFT

p9.4 (174) 9.2. #P COMPLETENESS.

9.2 #P completeness.

Now we define #P-completeness. Loosely speaking, a function f is #P-complete if it is in #P and
a polynomial-time algorithm for f implies that #P = FP. To formally define #P-completeness,
we use the notion of oracle TMs, as defined in Section 3.5. Recall that a TM M has oracle access
to a language O ⊆ {0, 1}∗ if it can make queries of the form “Is q ∈ O?” in one computational
step. We generalize this to non-Boolean functions by saying that M has oracle access to a function
f : {0, 1}∗ → {0, 1}∗, if it is given access to the language O = {〈x, i〉 : f(x)i = 1}. We use the same
notation for functions mapping {0, 1}∗ to N, identifying numbers with their binary representation
as strings. For a function f : {0, 1}∗ → {0, 1}∗, we define FPf to be the set of functions that are
computable by polynomial-time TMs that have access to an oracle for f .

Definition 9.5
A function f is #P-complete if it is in #P and every g ∈ #P is in FPf

If f ∈ FP then FPf = FP. Thus the following is immediate.

Proposition 9.6
If f is #P-complete and f ∈ FP then FP = #P.

Counting versions of many NP-complete languages such as 3SAT,Ham, and CLIQUE naturally
lead to #P-complete problems. We demonstrate this with #SAT:

Theorem 9.7
#SAT is #P-complete

Proof: Consider the Cook-Levin reduction from any L in NP to SAT we saw in Section 2.3. This
is a polynomial-time computable function f : {0, 1}∗ → {0, 1}∗ such that for every x ∈ {0, 1}∗,
x ∈ L ⇔ f(x) ∈ SAT. However, the proof that the reduction works actually gave us more
information than that. It provided a Levin reduction, by which we mean the proof showed a way
to transform a certificate that x is in L into a certificate (i.e., satisfying assignment) showing that
f(x) ∈ SAT, and also vice versa (transforming a satisfying assignment for f(x) into a witness that
x ∈ L).

In particular, it means that the mapping from the certificates of x to the assignments of f(x)
was invertible and hence one-to-one. Thus the number of satisfying assignments for f(x) is equal
to the number of certificates for x. �

As shown below, there are #P-complete problems for which the corresponding decision problems
are in fact in P.

9.2.1 Permanent and Valiant’s Theorem

Now we study another problem. The permanent of an n× n matrix A is defined as

perm(A) =
∑
σ∈Sn

n∏
i=1

Ai,σ(i) (2)

Web draft 2007-01-08 22:01

DRAFT

9.2. #P COMPLETENESS. p9.5 (175)

where Sn denotes the set of all permutations of n elements. Recall that the expression for the
determinant is similar

det(A) =
∑
σ∈Sn

(−1)sgn(σ)
n∏

i=1

Aiσ(i)

except for an additional “sign” term.1 This similarity does not translate into computational equiv-
alence: the determinant can be computed in polynomial time, whereas computing the permanent
seems much harder, as we see below.

The permanent function can also be interpreted combinatorially. First, suppose the matrix A
has each entry in {0, 1}. It may be viewed as the adjacency matrix of a bipartite graph G(X,Y,E),
with X = {x1, . . . , xn}, Y = {y1, . . . , yn} and {xi, yj} ∈ E iff Ai,j = 1. Then the term

∏n
i=1Aiσ(i)

is 1 iff σ is a perfect matching (which is a set of n edges such that every node is in exactly one
edge). Thus if A is a 0.1 matrix then perm(A) is simply the number of perfect matchings in the
corresponding graph G and in particular computing perm(A) is in #P. If A is a {−1, 0, 1} matrix,
then perm(A) =

∣∣{σ :
∏n

i=1Aiσ(i) = 1
}∣∣− ∣∣{σ :

∏n
i=1Aiσ(i) = −1

}∣∣, so one can make two calls to a
#SAT oracle to compute perm(A). In fact one can show for general integer matrices that computing
the permanent is in FP#SAT (see Exercise 2).

The next theorem came as a surprise to researchers in the 1970s, since it implies that if perm ∈
FP then P = NP. Thus, unless P = NP, computing the permanent is much more difficult then
computing the determinant.

Theorem 9.8 (Valiant’s Theorem)
perm for 0, 1 matrices is #P-complete.

Before proving Theorem 9.8, we introduce yet another way to look at the permanent. Consider
matrix A as the the adjacency matrix of a weighted n-node digraph (with possible self loops). Then
the expression

∏n
i=1Ai,σ(i) is nonzero iff σ is a cycle-cover of A (a cycle cover is a subgraph in which

each node has in-degree and out-degree 1; such a subgraph must be composed of cycles). We define
the weight of the cycle cover to be the product of the weights of the edges in it. Thus perm(A) is
equal to the sum of weights of all possible cycle covers.

Example 9.9
Consider the graph in Figure 9.2. Even without knowing what the subgraph G′ is, we show that
the permanent of the whole graph is 0. For each cycle cover in G′ of weight w there are exactly
two cycle covers for the three nodes, one with weight +w and one with weight −w. Any non-zero
weight cycle cover of the whole graph is composed of a cycle cover for G′ and one of these two cycle
covers. Thus the sum of the weights of all cycle covers of G is 0.

1It is known that every permutation σ ∈ Sn can be represented as a composition of transpositions, where a
transposition is a permutation that only switches between two elements in [n] and leaves the other elements intact
(one proof for this statement is the Bubblesort algorithm). If τ1, . . . , τm is a sequence of transpositions such that their
composition equals σ, then the sign of σ is equal to +1 if m is even and −1 if m is odd. It can be shown that the
sign is well-defined in the sense that it does not depend on the representation of σ as a composition of transpositions.

Web draft 2007-01-08 22:01

DRAFT

p9.6 (176) 9.2. #P COMPLETENESS.

G’

+1

+1

+1
-1

-1

-1

+1

+1
-1

+1

-1

-1

weight= -1

weight= +1

Figure 9.2: The above graph G has cycle cover weight zero regardless of the choice of G′, since for every cycle cover
of weight w in G′, there exist two covers of weight +w and −w in the graph G. (Unmarked edges have +1 weight;
we follow this convention through out this chapter.)

Proof of Valiant’s Theorem (Theorem 9.8): We reduce the #P-complete problem #3SAT
to perm. Given a boolean formula φ with n variables and m clauses, first we shall show how to
construct an integer matrix A′ with negative entries such that perm(A′) = 4m · (#φ). (#φ stands
for the number of satisfying assignments of φ). Later we shall show how to to get a 0-1 matrix A
from A′ such that knowing perm(A) allows us to compute perm(A′).

The main idea is that our construction will result in two kinds of cycle covers in the digraph G′

associated with A′: those that correspond to satisfying assignments (we will make this precise) and
those that don’t. We will use negative weights to ensure that the contribution of the cycle covers
that do not correspond to satisfying assignments cancels out. (This is similar reasoning to the one
used in Example 9.9.) On the other hand, we will show that each satisfying assignment contributes
4m to perm(A′), and so perm(A′) = 4m · (#φ).

To construct G′ from φ, we combine the following three kinds of gadgets shown in Figure 9.3:

Variable gadget The variable gadget has two possible cycle covers, corresponding to an assign-
ment of 0 or 1 to that variable. Assigning 1 corresponds to a single cycle taking all the
external edges (“true-edges”), and assigning 0 correspond to taking all the self-loops and
taking the “false-edge”. Each external edge of a variable is associated with a clause in which
the variable appears.

Clause gadget The clause gadget is such that the only possible cycle covers exclude at least one
external edge. Also for a given (proper) subset of external edges used there is a unique cycle
cover (of weight 1). Each external edge is associated with a variable appearing in the clause.

XOR gadget We also use a graph called the XOR gadget whose purpose is to ensure that for
some pair of edges

−−→
uu′ and

−→
v v′, exactly one of these edges is present in any cycle cover that

counts towards the final sum.

Suppose that we replace a pair of edges
−−→
uu′ and

−→
v v′ in some graph G with the XOR gadget as

described in Figure count:fig:valiantgad to obtain some graph G′. Then, via similar reasoning
to Example 9.9, every cycle cover of G of weight w that uses exactly one of the edges

−−→
uu′ and

Web draft 2007-01-08 22:01

DRAFT

9.2. #P COMPLETENESS. p9.7 (177)

variable gadget:

....

False edge

external (true) edges - one per clause

Symbolic description:

...

Gadget:

clause gadget:

external edges - one per variable

external edges

variable gadget

clause gadget

XOR gadget:

u u’

v’ v

-1

-1

-1
2

3

u u’

vv’ `

The overall construction:

external edges

...
variable gadget

clause gadget

......

............

variable gadget
for every variable

clause gadget
for every clause

connect via XOR external
edges of gadgets for
variables that appear in clauses.

Figure 9.3: The gadgets used in the proof of Valiant’s Theorem.

Web draft 2007-01-08 22:01

DRAFT

p9.8 (178) 9.2. #P COMPLETENESS.
−→
v v′ is mapped to a set of cycle covers in G′ whose total weight is 4w (i.e., the set of covers
that enter the gadget at u and exit at u′ or enter it at v and exit it at v′), while all the other
cycle covers of G′ have total weight 0 (Exercise 3). For this reason, whenever we replace edges
−−→
uu′ and

−→
v v′ with a XOR gadget, we can consider in the analysis only cycle covers that use

exactly one of these edges, as the other covers do not contribute anything to the total sum.

The XOR gadgets are used to connect the variable gadgets to the corresponding clause gadgets
so that only cycle covers corresponding to a satisfying assignment will be counted towards the total
number of cycle covers. Consider a clause, and a variable appearing in it. Each has an external
edge corresponding to the other, connected by an XOR gadget. If the external edge in the clause is
not taken then by the analysis of the XOR gadget the external edge in the variable must be taken
(and hence the variable is true). Since at least one external edge of each clause gadget has to be
omitted, each cycle cover that is counted towards the sum corresponds to a satisfying assignment.
Conversely, for each satisfying assignment, there is a a set of cycle covers with total weight 43m

(since they passes through the XOR gadget exactly 3m times). So perm(G′) = 43m#φ.

Reducing to the case 0, 1 matrices. Finally we have to reduce finding perm(G′) to finding
perm(G), where G is an unweighted graph (or equivalently, its adjacency matrix has only 0, 1
entries). We start by reducing to the case that all edges have weights in {±1}. First, note that
replacing an edge of weight k by k parallel edges of weight 1 does not change the permanent.
Parallel edges are not allowed, but we can make edges non-parallel by cutting each edge −→u v in two
and inserting a new node w with an edge from u to w, w to v and a self loop at w. To get rid
of the negative weights, note that the permanent of an n vertex graph with edge weights in {±1}
is a number x in [−n!,+n!] and hence this permanent can be computed from y = x (mod 2m+1)
where m is sufficiently large (e.g., m = n2 will do). But to compute y it is enough to compute
the permanent of the graph where all weight −1 edges are replaced with edges of weight 2m. Such
edges can be converted to m edges of weight 2 in series, which again can be transformed to parallel
edges of weight +1 as above. �

9.2.2 Approximate solutions to #P problems

Since computing exact solutions to #P-complete problems is presumably difficult, a natural ques-
tion is whether we can approximate the number of certificates in the sense of the following definition.

Definition 9.10
Let f : {0, 1}∗ → N and α < 1. An algorithm A is an α-approximation for f if for every x,
αf(x) ≤ A(x) ≤ f(x)/α.

Not all #P problems behave identically with respect to this notion. Approximating certain
problems within any constant factor α > 0 is NP-hard (see Exercise 5). For other problems such
as 0/1 permanent, there is a Fully polynomial randomized approximation scheme (FPRAS), which
is an algorithm which, for any ε, δ, approximates the function within a factor 1+ ε (its answer may
be incorrect with probability δ) in time poly(n, log 1/δ, log 1/ε). Such approximation of counting
problems is sufficient for many applications, in particular those where counting is needed to obtain

Web draft 2007-01-08 22:01

DRAFT

9.3. TODA’S THEOREM: PH ⊆ P#SAT p9.9 (179)

estimates for the probabilities of certain events (e.g., see our discussion of the graph reliability
problem).

The approximation algorithm for the permanent —as well as other similar algorithms for a
host of #P-complete problems—use the Monte Carlo Markov Chain technique. The result that
spurred this development is due to Valiant and Vazirani and it shows that under fairly general
conditions, approximately counting the number of elements in a set (membership in which is
testable in polynomial time) is equivalent —in the sense that the problems are interreducible via
polynomial-time randomized reductions— to the problem of generating a random sample from the
set. We will not discuss this interesting area any further.

Interestingly, if P = NP then every #P problem has an FPRAS (and in fact an FPTAS: i.e.,
a deterministic polynomial-time approximation scheme), see Exercise 6.

9.3 Toda’s Theorem: PH ⊆ P#SAT

An important question in the 1980s was the relative power of the polynomial-hierarchy PH and
the class of counting problems #P. Both are natural generalizations of NP, but it seemed that
their features— alternation and the ability to count certificates, respectively — are not directly
comparable to each other. Thus it came as big surprise when in 1989 Toda showed:

Theorem 9.11 (Toda’s theorem [?])
PH ⊆ P#SAT.

That is, we can solve any problem in the polynomial hierarchy given an oracle to a #P-complete
problem.
Remark 9.12
Note that we already know, even without Toda’s theorem, that if #P = FP then NP = P
and so PH = P. However, this does not imply that any problem in PH can be computed in
polynomial-time using an oracle to #SAT. For example, one implication of Toda’s theorem is that
a subexponential (i.e., 2no(1)

-time) algorithm for #SAT will imply such an algorithm for any problem
in PH. Such an implication is not known to hold from a 2no(1)

-time algorithm for SAT.

9.3.1 The class ⊕P and hardness of satisfiability with unique solutions.

The following complexity class will be used in the proof:
Definition 9.13
A language L in the class ⊕P (pronounced “parity P”) iff there exists a polynomial time NTM M
such that x ∈ L iff the number of accepting paths of M on input x is odd.

Thus, ⊕P can be considered as the class of decision problems corresponding to the least sig-
nificant bit of a #P-problem. As in the proof of Theorem 9.7, the fact that the standard NP-
completeness reduction is parsimonious implies the following problem ⊕SAT is ⊕P-complete (under
many-to-one Karp reductions):

Web draft 2007-01-08 22:01

DRAFT

p9.10 (180) 9.3. TODA’S THEOREM: PH ⊆ P#SAT

Definition 9.14
Define the quantifier

⊕
as follows: for every Boolean formula ϕ on n variables.

⊕
x∈{0,1}n ϕ(x) is

true if the number of x’s such that ϕ(x) is true is odd.2 The language ⊕SAT consists of all the true
quantified Boolean formula of the form

⊕
x∈{0,1}n ϕ(x) where ϕ is an unquantified Boolean formula

(not necessarily in CNF form).

Unlike the class #P, it is not known that a polynomial-time algorithm for ⊕P implies that
NP = P. However, such an algorithm does imply that NP = RP since NP can be probabilistically
reduced to ⊕SAT:

Theorem 9.15 (Valiant-Vazirani Theorem)
There exists a probabilistic polynomial-time algorithm A such that for every n-
variable Boolean formula ϕ

ϕ ∈ SAT ⇒ Pr[A(ϕ) ∈ ⊕SAT] ≥ 1
8n

ϕ 6∈ SAT ⇒ Pr[A(ϕ) ∈ ⊕SAT] = 0

To prove Theorem 9.15 we use the following lemma on pairwise independent hash functions:

Lemma 9.16 (Valiant-Vazirani Lemma [?])
Let Hn,k be a pairwise independent hash function collection from {0, 1}n to {0, 1}k and S ⊆ {0, 1}n

such that 2k−2 ≤ |S| ≤ 2k−1. Then,

Pr
h∈RHn,k

[
∣∣∣{x ∈ S : h(x) = 0k

}∣∣∣ = 1] ≥ 1
8

Proof: For every x ∈ S, let p = 2−k be the probability that h(x) = 0k when h ∈R Hn,k. Note
that for every x 6= x′, Pr[h(x)=0k ∧ h(x′)=0k] = p2. Let N be the random variable denoting the
number of x ∈ S satisfying h(x) = 0k. Note that E[N] = |S|p ∈ [14 ,

1
2]. By the inclusion-exclusion

principle

Pr[N ≥ 1] ≥
∑
x∈S

Pr[h(x)=0k]−
∑

x<x′∈S

Pr[h(x)=0k ∧ h(x′)=0k] = |S|p−
(
|S|
2

)
p2

and by the union bound we get that Pr[N ≥ 2] ≤
(|S|

2

)
p2. Thus

Pr[N = 1] = Pr[N ≥ 1]− Pr[N ≥ 2] ≥ |S|p− 2
(
|S|
2

)
p2 ≥ |S|p− |S|2p2 ≥ 1

8

where the last inequality is obtained using the fact that 1
4 ≤ |S|p ≤ 1

2 . �

2Note that if we identify true with 1 and 0 with false then
⊕

x∈{0,1}n ϕ(x) =
∑

x∈{0,1}n ϕ(x) (mod 2). Also note

that
⊕

x∈{0,1}n ϕ(x) =
⊕

x1∈{0,1} · · ·
⊕

xn∈{0,1} ϕ(x1, . . . , xn).

Web draft 2007-01-08 22:01

DRAFT

9.3. TODA’S THEOREM: PH ⊆ P#SAT p9.11 (181)

Proof of Theorem 9.15

We now use Lemma 9.16 to prove Theorem 9.15. Given a formula ϕ on n variables, our probabilistic
algorithm A chooses k at random from {2, . . . , n+ 1} and a random hash function h ∈R Hn,k. It
then uses the Cook-Levin reduction to compute a formula τ on variables x ∈ {0, 1}n , y ∈ {0, 1}m

(for m = poly(n)) such that h(x) = 0 if and only if there exists a unique y such that τ(x, y) = 1.3

The output of A if the formula

ψ =
⊕

x∈{0,1}n,y∈{0,1}m

ϕ(x) ∧ τ(x, y) ,

It is equivalent to the statement ⊕
x∈{0,1}n

ϕ(x) ∧ h(x) = 0k ,

If ϕ is unsatisfiable then ψ is false, since we’ll have no x’s satisfying the inner formula and
zero is an even number. If ϕ is satisfiable, we let S be the set of its satisfying assignments. With
probability 1/n, k satisfies 2k−2 ≤ |S| ≤ 2k, conditioned on which, with probability 1/8, there is a
unique x such that ϕ(x)∧ h(x) = 0n. Since one happens to be an odd number, this implies that ψ
is true. �

Remark 9.17 (Hardness of Unique Satisfiability)
The proof of Theorem 9.15 implies the following stronger statement: the existence of an algorithm
to distinguish between an unsatisfiable Boolean formula and a formula with exactly one satisfying
assignment implies the existence of a probabilistic polynomial-time algorithm for all of NP. Thus,
the guarantee that a particular search problem has either no solutions or a unique solution does
not necessarily make the problem easier to solve.

9.3.2 Step 1: Randomized reduction from PH to ⊕P

We now go beyond NP (that is to say, the Valiant-Vazirani theorem) and show that we can actually
reduce any language in the polynomial hierarchy to ⊕SAT.

Lemma 9.18
Let c ∈ N be some constant. There exists a probabilistic polynomial-time algorithm A such that
for every ψ a Quantified Boolean formula with c levels of alternations,

ψ is true ⇒Pr[A(ψ) ∈ ⊕SAT] ≥ 2
3

ψ is false ⇒Pr[A(ψ) ∈ ⊕SAT] = 0

Before proving the Lemma, let us make a few notations and observations: For a Boolean
formula ϕ on n variables, let #(ϕ) denote the number of satisfying assignments of ϕ. We consider
also formulae ϕ that are partially quantified. That is, in addition to the n variables ϕ takes as input

3For some implementations of hash functions, such as the one described in Exercise 4, one can construct directly
(without going through the Cook-Levin reduction) such a formula τ that does not use the y variables.

Web draft 2007-01-08 22:01

DRAFT

p9.12 (182) 9.3. TODA’S THEOREM: PH ⊆ P#SAT

it may also have other variables that are bound by a ∀,∃ or
⊕

quantifiers (for example ϕ can be of
the form ϕ(x1, . . . , xn) = ∀y ∈ {0, 1}n τ(x1, . . . , xn, y) where τ is, say, a 3CNF Boolean formula).

Given two (possibly partially quantified) formulae ϕ,ψ on variables x ∈ {0, 1}n , y ∈ {0, 1}m we
can construct in polynomial-time an n+m variable formula ϕ · ψ and a (max{n,m}+ 1)-variable
formula ϕ + ψ such that #(ϕ · ψ) = #(ϕ)#(ϕ) and #(ϕ + ψ) = #(ϕ) + #(ψ). Indeed, take
ϕ · ψ(x, y) = ϕ(x) ∧ ϕ(y) and ϕ + ψ(z) =

(
(z0 = 0) ∧ ϕ(z1, . . . , zn)

)
∨

(
(z0 = 1) ∧ ψ(z1, . . . , zm)

)
.

For a formula ϕ, we use the notation ϕ+ 1 to denote the formula ϕ+ψ where ψ is some canonical
formula with a single satisfying assignment. Since the product of numbers is even iff one of the
numbers is even, and since adding one to a number flips the parity, for every two formulae ϕ,ψ as
above (⊕

x

ϕ(x)
)
∧

(⊕
y

ψ(y)
)
⇔

⊕
x,y

(ϕ · ψ)(x, y) (3)

¬
⊕

x

ϕ(x) ⇔
⊕
x,z

(ϕ+ 1)(x, z) (4)

(⊕
x

ϕ(x)
)
∨

(⊕
y

ψ(y)
)
⇔

⊕
x,y,z

((ϕ+ 1) · (ψ + 1) + 1)(x, y, z) (5)

Proof of Lemma 9.18: Recall that membership in a PH-language can be reduced to deciding
the truth of a quantified Boolean formula with a constant number of alternating quantifiers. The
idea behind the proof is to replace one-by-one each ∃/∀ quantifiers with a

⊕
quantifier.

Let ψ be a formula with c levels of alternating ∃/∀ quantifiers, possibly with an initial
⊕

quantifier. We transform ψ in probabilistic polynomial-time to a formula ψ′ such that ψ′ has only
c − 1 levels of alternating ∃/∀ quantifiers, an initial

⊕
quantifier, satisfying (1) if ψ is false then

so is ψ′, and (2) if ψ is true then with probability at least 1− 1
10c , ψ

′ is true as well. The lemma
follows by repeating this step c times.

For ease of notation, we demonstrate the proof for the case that ψ has a single
⊕

quantifier
and two additional ∃/∀ quantifiers. We can assume without loss of generality that ψ is of the form

ψ =
⊕

z∈{0,1}`

∃x∈{0,1}n∀w∈{0,1}kϕ(z, x, w) ,

as otherwise we can use the identities ∀xP (x) = ¬∃x¬P (x) and (4) to transform ψ into this form.
The proof of Theorem 9.15 provides for every n, a probabilistic algorithm that outputs a for-

mula τ on variables x ∈ {0, 1}n and y ∈ {0, 1}m such that for every nonempty set S ⊆ {0, 1}n,
Pr[⊕x∈{0,1}n,y∈{0,1}mτ(x, y)] ≥ 1/(8n). Run this algorithm t = 100c` log n times to obtain the for-
mulae τ1, . . . , τt. Then, for every nonempty set S ⊆ {0, 1}n the probability that there does not
exist i ∈ [t] such that ⊕x∈{0,1}n,y∈{0,1}mτ(x, y) is True is less than 2−`/(10c). We claim that this
implies that with probability at least 1− 1/(10c), the following formula is equivalent to ψ:⊕

z∈{0,1}`

θ(z) , (6)

where

θ(z) = ∨t
i=1

 ⊕
x∈{0,1}n,y∈{0,1}m

∀w∈{0,1}kτi(x, y) ∧ ϕ(x, z, w)

Web draft 2007-01-08 22:01

DRAFT

9.3. TODA’S THEOREM: PH ⊆ P#SAT p9.13 (183)

Indeed, for every z ∈ {0, 1}` define Sz =
{
x ∈ {0, 1}n : ∀w∈{0,1}kϕ(x, z, w)

}
. Then, ψ is equivalent

to ⊕z∈{0,1}` |Sz| is nonempty. But by the union bound, with probability at least 1−1/(10c) it holds
that for every z such that Sz is nonempty, there exists τi satisfying ⊕x,yτi(x, y). This means that
for every such z, θ(z) is true. On the other hand, if Sz is empty then certainly θ(z) is false, implying
that indeed ψ is equivalent to (6).

By applying the identity (5), we can transform (6) into an equivalent formula of the desired
form ⊕

z,x,y,w

∀wϕ
′(x, y, z, w)

for some unquantified polynomial-size formula ϕ′. �

9.3.3 Step 2: Making the reduction deterministic

To complete the proof of Toda’s Theorem (Theorem 9.11), we prove the following lemma:

Lemma 9.19
There is a (deterministic) polynomial-time transformation T that, for every formula ψ that is an
input for ⊕SAT, T (ψ, 1m) is an unquantified Boolean formula and

ψ ∈ ⊕SAT ⇒#(ϕ) = −1 (mod 2m+1)

ψ 6∈ ⊕SAT ⇒#(ϕ) = 0 (mod 2m+1)

Proof of Theorem 9.11 using Lemmas 9.18 and 9.19.: Let L ∈ PH. We show that we can
decide whether an input x ∈ L by asking a single question to a #SAT oracle. For every x ∈ {0, 1}n,
Lemmas 9.18 and 9.19 together imply there exists a polynomial-time TM M such that

x ∈ L⇒ Pr
r∈R{0,1}m

[#(M(x, r)) = −1 (mod 2m+1)] ≥ 2
3

x 6∈ L⇒ ∀r∈R{0,1}m#(M(x, r)) = 0 (mod 2m+1)

where m is the (polynomial in n) number of random bits used by the procedure described in that
Lemma. Furthermore, even in the case x ∈ L, we are guaranteed that for every r ∈ {0, 1}m,
#(M(x, r)) ∈ {0,−1} (mod 2m+1).

Consider the function that maps two strings r, u into the evaluation of the formulaM(x, r) on the
assignment u. Since this function is computable in polynomial-time, the Cook-Levin transformation
implies that we can obtain in polynomial-time a CNF formula θx on variables r, u, y such that for
every r, u, M(x, r) is satisfied by u if and only if there exist a unique y such that θx(r, u, y) is true.
Let fx(r) be the number of u, y such that θx(r, u, y) is true, then

#(θx) =
∑

r∈{0,1}m

fx(r) ,

But if x 6∈ L then fx(r) = 0 (mod 2m+1) for every r, and hence #(θx) = 0 (mod 2m+1). On the
other hand, if x ∈ L then fx(r) = −1 (mod 2m+1) for between 2

32m and 2m values of r, and is

Web draft 2007-01-08 22:01

DRAFT

p9.14 (184) 9.4. OPEN PROBLEMS

equal to 0 on the other values, and hence #(θx) 6= 0 (mod 2m+1). We see that deciding whether
x ∈ L can be done by computing #(θx).�

Proof of Lemma 9.19: For every pair of formulae ϕ,τ recall that we defined formulas ϕ+ τ and
ϕ · τ satisfying #(ϕ+ τ) = #(ϕ) + #(τ) and #(ϕ · τ) = #(ϕ)#(τ), and note that these formulae
are of size at most a constant factor larger than ϕ, τ . Consider the formula 4τ3 +3τ4 (where τ3 for
example is shorthand for τ · (τ · τ)). One can easily check that

#(τ) = −1 (mod 22i
) ⇒#(4τ3 + 3τ4) = −1 (mod 22i+1

) (7)

#(τ) = 0 (mod 22i
) ⇒#(4τ3 + 3τ4) = 0 (mod 2)2

i+1
(8)

Let ψ0 = ψ and ψi+1 = 4ψ3
i + 3ψ4

i . Let ψ∗ = ψdlog(m+1)e. Repeated use of equations (7), (8)
shows that if #(ψ) is odd, then #(ψ∗) = −1 (mod 2m+1) and if #(ψ) is even, then #(ψ∗) = 0
(mod 2m+1). Also, the size of ψ∗ is only polynomially larger than size of ψ. �

What have we learned?

• The class #P consists of functions that count the number of certificates for a
given instance. If P 6= NP then it is not solvable in polynomial time.

• Counting analogs of many natural NP-complete problems are #P-complete,
but there are also #P-complete counting problems for which the correspond-
ing decision problem is in P. One example for this is the problem perm of
computing the permanent.

• Surprisingly, counting is more powerful than alternating quantifiers: we can
solve every problem in the polynomial hierarchy using an oracle to a #P-
complete problem.

• The classes PP and ⊕P contain the decision problems that correspond to
the most significant and least significant bits (respectively) of a #P function.
The class PP is as powerful as #P itself, in the sense that if PP = P then
#P = FP. We do not know if this holds for ⊕P but do know that every
language in PH randomly reduces to ⊕P.

9.4 Open Problems

• What is the exact power of ⊕SAT and #SAT ?

• What is the average case complexity of n × n permanent modulo small prime, say 3 or 5 ?
Note that for a prime p > n, random self reducibility of permanent implies that if permanent
is hard to compute on at least one input then it is hard to compute on 1 − O(p/n) fraction
of inputs, i.e. hard to compute on average (see Theorem ??).

Web draft 2007-01-08 22:01

DRAFT

9.4. OPEN PROBLEMS p9.15 (185)

Chapter notes and history

The definition of #P as well as several interesting examples of #P problems appeared in Valiant’s
seminal paper [?]. The #P-completeness of the permanent is from his other paper [?]. Toda’s
Theorem is proved in [?]. The proof given here follows the proof of [?] (although we use formulas
where they used circuits.)

For an introduction to FPRAS’s for computing approximations to many counting problems, see
the relevant chapter in Vazirani [?] (an excellent resource on approximation algorithms in general).

.

Exercises

§1 Let f ∈ #P. Show a polynomial-time algorithm to compute f given access to an oracle for
some language L ∈ PP (see Remark ??).

Hint:withoutlossofgeneralityyoucanthinkthatf=
#CKT−SAT,theproblemofcomputingthenumberofsatisfy-
ingassignmentsforagivenBooleancircuitC,andthatyouare
givenanoraclethattellsyouifagivenn-variablecircuit,hasat
least2

n−1
satisfyingassignmentsornot.Themainobservationyou

canuseisthatifChasatleast2
n−1

satisfyingassignmentsthen
itispossibletousetheoracletofindastringxsuchthatChas
exactly2

n−1
satisfyingassignmentsthatarelargerthanxinthe

naturallexicographicorderingofthestringsin{0,1}
n
.

§2 Show that computing the permanent for matrices with integer entries is in FP#SAT.

§3 Complete the analysis of the XOR gadget in the proof of Theorem 9.8. Let G be any weighted
graph containing a pair of edges

−−→
uu′ and

−→
v v′, and let G′ be the graph obtained by replacing

these edges with the XOR gadget. Prove that every cycle cover of G of weight w that uses
exactly one of the edges

−−→
uu′ is mapped to a set of cycle covers in G′ whose total weight is

4w, and all the other cycle covers of G′ have total weight 0.

§4 Let k ≤ n. Prove that the following family Hn,k is a collection of pairwise independent
functions from {0, 1}n to {0, 1}k: Identify {0, 1} with the field GF(2). For every k × n
matrix A with entries in GF(2), and k-length vector b ∈ GF(2)n, Hn,k contains the function
hA,b : GF(2)n → GF(2)k defined as follows: hA,b(x) = Ax+ b.

§5 Show that if there is a polynomial-time algorithm that approximates #CYCLE within a factor
1/2, then P = NP.

§6 Show that if NP = P then for every f ∈ #P and there is a polynomial-time algorithm
that approximates f within a factor of 1/2. Can you show the same for a factor of 1 − ε for
arbitrarily small constant ε > 0? Can you make these algorithms deterministic?

Web draft 2007-01-08 22:01

DRAFT

p9.16 (186) 9.4. OPEN PROBLEMS

Note that we do not know whether P = NP implies that exact computation of functions in
#P can be done in polynomial time.

Hint:UsehashingandideassimilartothoseintheproofofToda’s
theorem,wherewealsoneededtoestimatethesizeofasetof
strings.Ifyoufindthisquestiondifficultyoumightwanttocome
backtoitafterseeingtheGoldwasser-Sipsersetlowerboundpro-
tocolofChapter8.Tomakethealgorithmdeterministicusethe
ideasoftheproofthatBPP⊆PH(Theorem7.18).

§7 Show that every for every language in AC0 there is a depth 3 circuit of npoly(log n) size that
decides it on 1 − 1/poly(n) fraction of inputs and looks as follows: it has a single ⊕ gate at
the top and the other gates are ∨,∧ of fanin at most poly(log n).

Hint:usetheproofofLemma9.18.

Web draft 2007-01-08 22:01

	Complexity of counting
	The class #P
	The class PP: decision-problem analog for #P.

	#P completeness.
	Permanent and Valiant's Theorem
	Approximate solutions to #P problems

	Toda's Theorem: PHP#SAT
	The class P and hardness of satisfiability with unique solutions.
	Proof of Theorem 9.15

	Step 1: Randomized reduction from PH to P
	Step 2: Making the reduction deterministic

	Open Problems
	Chapter notes and history
	Exercises

