Computational Complexity:

A Modern Approach

Sanjeev Arora and Boaz Barak

Princeton University
http://www.cs.princeton.edu/theory/complexity/

complexitybook@gmail.com

Not to be reproduced or distributed without the authors’ permission

To our wives— Silvia and Ravit

About this book

Computational complexity theory has developed rapidly in the past three decades. The
list of surprising and fundamental results proved since 1990 alone could fill a book: these
include new probabilistic definitions of classical complexity classes (IP = PSPACE and
the PCP Theorems) and their implications for the field of approximation algorithms; Shor’s
algorithm to factor integers using a quantum computer; an understanding of why current
approaches to the famous P versus NP will not be successful; a theory of derandomization
and pseudorandomness based upon computational hardness; and beautiful constructions of
pseudorandom objects such as extractors and expanders.

This book aims to describe such recent achievements of complexity theory in the con-
text of more classical results. It is intended to both serve as a textbook and as a reference
for self-study. This means it must simultaneously cater to many audiences, and it is care-
fully designed with that goal. We assume essentially no computational background and
very minimal mathematical background, which we review in Appendix A. We have also
provided a web site for this book at http://www.cs.princeton.edu/theory/complexity/
with related auxiliary material including detailed teaching plans for courses based on this
book, a draft of all the book’s chapters, and links to other online resources covering related
topics. Throughout the book we explain the context in which a certain notion is useful, and
why things are defined in a certain way. We also illustrate key definitions with examples.
To keep the text flowing, we have tried to minimize bibliographic references, except when
results have acquired standard names in the literature, or when we felt that providing some
history on a particular result serves to illustrate its motivation or context. (Every chapter
has a notes section that contains a fuller, though still brief, treatment of the relevant works.)
When faced with a choice, we preferred to use simpler definitions and proofs over showing
the most general or most optimized result.

The book is divided into three parts:

Part I: Basic complexity classes. This part provides a broad introduction to the field.
Starting from the definition of Turing machines and the basic notions of computability
theory, it covers the basic time and space complexity classes, and also includes a few
more modern topics such as probabilistic algorithms, interactive proofs, cryptography,
quantum computers, and the PCP Theorem and its applications.

Part II: Lower bounds on concrete computational models. This part describes lower
bounds on resources required to solve algorithmic tasks on concrete models such as
circuits, decision trees, etc. Such models may seem at first sight very different from
Turing machines, but looking deeper one finds interesting interconnections.

Part III: Advanced topics. This part is largely devoted to developments since the late
1980s. It includes counting complexity, average case complexity, hardness amplifica-
tion, derandomization and pseudorandomness, the proof of the PCP theorem, and
natural proofs.

Almost every chapter in the book can be read in isolation (though Chapters 1, 2 and 7
must not be skipped). This is by design, because the book is aimed at many classes of
readers:

e Physicists, mathematicians, and other scientists. This group has become increasingly
interested in computational complexity theory, especially because of high-profile re-
sults such as Shor’s algorithm and the recent deterministic test for primality. This

Vi

intellectually sophisticated group will be able to quickly read through Part I. Progress-
ing on to Parts IT and III they can read individual chapters and find almost everything
they need to understand current research.

o Computer scientists who do not work in complezity theory per se. They may use the
book for self-study, reference, or to teach an undergraduate or graduate course in
theory of computation or complexity theory.

o All those —professors or students— who do research in complexity theory or plan to do
so. The coverage of recent results and advanced topics is detailed enough to prepare
readers for research in complexity and related areas.

This book can be used as a textbook for several types of courses:

e Undergraduate Theory of Computation. Many Computer Science departments offer
an undergraduate Theory of Computation course, using say Sipser’s book [Sip96]. Our
text could be used to supplement Sipser’s book with coverage of some more modern
topics such as probabilistic algorithms, cryptography and quantum computing. Un-
dergraduate students may find these more exciting than traditional topics such as
automata theory and the finer distinctions of computability theory. The prerequisite
mathematical background would be some comfort with mathematical proofs and dis-
crete mathematics, as covered in the typical “discrete math” /“math for CS” courses
currently offered in many CS departments.

e Introduction to computational complexity for advanced undergrads/beginning grads.
The book can be used as a text for an introductory complexity course aimed at ad-
vanced undergraduate or graduate students in computer science (replacing books such
as Papadimitriou’s 1994 text [Pap94], that do not contain many recent results). Such
a course would probably include many topics from Part I and then a sprinkling from
Parts II and III, and assume some background in algorithms and/or the theory of
computation.

e Graduate Complexity course. The book can serve as a text for a graduate complexity
course that prepares graduate students for research in complexity theory or related
areas like algorithms, machine learning, etc. Such a course can use Part I to review
basic material, and then move on to the advanced topics of Parts IT and III. The book
contains far more material than can be taught in one term, and we provide on our
website several alternative outlines for such a course.

o Graduate seminars or advanced courses. Individual chapters from Parts II and III can
be used in seminars or advanced courses on various topics in complexity theory (e.g.,
derandomization, the PCP Theorem, lower bounds).

We provide several teaching plans and material for such courses on the book’s web site.
If you use the book in your course, we’d love to hear about it and get your feedback. We
ask that you do not publish solutions for the book’s exercises on the web though, so other
people can use them as homework and exam questions as well.

As we finish this book, we are sorely aware of many more exciting results that we had
to leave out. We hope the copious references to other texts will give the reader plenty of
starting points for further explorations. We also plan to periodically update the book’s
website with pointers to newer results or expositions that may be of interest to you.

Above all, we hope that this book conveys our excitement about computational com-
plexity and the insights it provides in a host of other disciplines.

Onward to P versus NP!

Acknowledgements

Our understanding of complexity theory was shaped through interactions with our col-
leagues, and we have learned a lot from far too many people to mention here. Boaz would
like to especially thank two mentors— Oded Goldreich and Avi Wigderson— who introduced
to him the world of theoretical computer science and still influence much of his thinking on
this area.

We thank Luca Trevisan for coconceiving the book (7 years ago!) and helping write the
first drafts of a couple of chapters. Several colleagues have graciously agreed to review for us
early drafts of parts of this book. These include Scott Aaronson, Noga Alon, Paul Beame,
Irit Dinur, Venkatesan Guruswami, Valentine Kavanets, Jonathan Katz, Subhash Khot, Jif{
Matousek , Klaus Meer, Or Meir, Moni Naor, Alexandre Pinto, Alexander Razborov, Oded
Regev, Omer Reingold, Ronen Shaltiel, Madhu Sudan, Amnon Ta-Shma, Tannis Tourlakis,
Chris Umans, Salil Vadhan, Dieter van Melkebeek, Umesh Vazirani, and Joachim von zur
Gathen. Special thanks to Jifi, Or, Alexandre, Dieter and Iannis for giving us very detailed
and useful comments on many chapters of this book.

We also thank many others who have sent notes on typos or bugs, comments that
helped improve the presentations, or answered our questions on a particular proof or refer-
ence. These include Emre Akbas, Djangir Babayev, Miroslav Balaz, Arnold Beckmann, Ido
Ben-Eliezer, Goutam Biswas, Shreeshankar Bodas, Josh Bronson, Arkadev Chattopadhyay,
Bernard Chazelle, Maurice Cochand, Nathan Collins, Tim Crabtree, Morten Dahl, Ronald
de Wolf, Scott Diehl, Dave Doty, Michael Fairbank, Joan Feigenbaum, Lance Fortnow, Ali
Ghodsi, Parikshit Gopalan, Vipul Goyal, Venkat Guruswami, Stephen Harris, Johan Hastad,
Andre Hernich, Yaron Hirsch, Thomas Holenstein, Moukarram Kabbash, Bart Kastermans,
Joe Kilian, Tomer Kotek, Michal Koucy, Sebastian Kuhnert, Katrina LaCurts, Chang-Wook
Lee, James Lee, John Lenz, Meena Mahajan, Mohammad Mahmoody-Ghidary, Shohei Mat-
suura, Mauro Mazzieri, John McCullough, Eric Miles, Shira Mitchell, Mohsen Momeni,
Kamesh Munagala, Rolf Neidermeier, Robert Nowotniak, Taktin Oey, Emily Pitler, Toni
Pitassi, Manoj Prabhakaran, Anup Rao, Saikiran Rapaka, Nicola Rebagliati, Johan Richter,
Ron Rivest, Mohammad Sadeq Dousti, Rahul Santhanam, Cem Say, Robert Schweiker,
Thomas Schwentick, Joel Seiferas, Jonah Sherman, Amir Shpilka, Yael Snir, Nikhil Srivas-
tava, Thomas Starbird, Jukka Suomela, Elad Tsur, Leslie Valiant, Vijay Vazirani, Suresh
Venkatasubramanisn, Justin Vincent-Foglesong, Jirka Vomlel, Daniel Wichs, Avi Wigder-
son, Maier Willard, Roger Wolff, Jureg Wullschleger, Rui Xue, Jon Yard, Henry Yuen, Wu
Zhanbin, and Yi Zhang. Thank you!

Doubtless this is list is still missing some of the people that helped us with this project
over the years— if you are one of them we are both grateful and sorry.

This book was typeset using KTEX, for which we’re grateful to Donald Knuth and Leslie
Lamport. Stephen Boyd and Lieven Vandenberghe kindly shared with us the N TEX macros
of their book Convex Optimization.

Most of all, we’d like to thank our families— Silvia, Nia and Rohan Arora, and Ravit
and Alma Barak.

Contents at a glance

Introduction

Part I: Basic Complexity Classes

Chapter 1:
Chapter 2:
Chapter 3:
Chapter 4:
Chapter 5:
Chapter 6:
Chapter 7:
Chapter 8:
Chapter 9:

Chapter 10:
Chapter 11:

The computational model - and why it doesn’t matter
NP and NP completeness
Diagonalization
Space complexity
The polynomial hierarchy and alternations
Boolean circuits
Randomized Computation
Interactive proofs
Cryptography
Quantum computation
PCP Theorem and Hardness of Approximation: An introduction

Part Il: Lower bounds for concrete computational models

Chapter 12:
Chapter 13:
Chapter 14:
Chapter 15:
Chapter 16:

Decision trees
Communication complexity
Circuit lower bounds

Proof Complexity

Algebraic computation models

Part Ill: Advanced topics

Chapter 17:
Chapter 18:
Chapter 19:
Chapter 20:
Chapter 21:
Chapter 22:
Chapter 23:

Complexity of counting

Average case complexity: Levin’'s theory

Hardness amplification and error correcting codes
Derandomization

Pseudorandom constructions: expanders and extractors
Proofs of PCP theorems and the Fourier transform technique
Why are circuit lower bounds so difficult?

Appendix A: Mathematical background

13
37
61
71
85
95
109
127
151
175
205

223
233
247
265
275

295
313
323
349
365
397
429

439

Contents

About this book
Introduction

0 Notational Conventions

0.1 Representing objects as strings 0oL
0.2 Decision problems / languages
0.3 Big-Oh notation L
Exercises e

Basic Complexity Classes

The computational model —and why it doesn’t matter
1.1 Modeling computation: What you really need to know
1.2 The Turing Machine
1.2.1 The expressive power of Turing machines
1.3 Efficiency and running timeo oo
1.3.1 Robustness of our definition o0
1.4 Machines as strings and the universal Turing machine
1.4.1 The Universal Turing Machine
1.5 Uncomputability: An introduction
1.5.1 The Halting Problem (first encounter with reductions)
1.5.2 Godel’s Theorem Lo
1.6 Theclass P o
1.6.1 Why the model may not matter
1.6.2 On the philosophical importance of P
1.6.3 Criticisms of P and some efforts to address them
1.6.4 Edmonds’ quote
Chapter notes and history
Exerciseso
1.A Proof of Theorem 1.9: Universal Simulation in O(T logT)-time

NP and NP completeness

2.1 Theclass NP e
2.1.1 Relation between NP and P
2.1.2 Non-deterministic Turing machines.

2.2 Reducibility and NP-completeness

2.3 The Cook-Levin Theorem: Computation is Local
2.3.1 Boolean formulae, CNF and SAT.
2.3.2 The Cook-Levin Theorem
2.3.3 Warmup: Expressiveness of Boolean formulae
2.3.4 Proof of Lemma 2.11
2.3.5 Reducing SAT to 3SAT.
2.3.6 More thoughts on the Cook-Levin theorem

11

13
14
15
18
19
19
22
22
24
25
25
26
27
28
28
29
30
31
34

xii

Contents

2.4 The web of reductions Lo
2.5 Decision versus search L o
26 coNP,EXPand NEXP
2.6.1 colNP e
26.2 EXPand NEXP
2.7 More thoughts about P, NP, and all that
2.7.1 The philosophical importance of NP
2.7.2 NP and mathematical proofs
273 Whatif P=NP?
2.74 What if NP =colNP?
2.7.5 Is there anything between NP and NP-complete?
2.7.6 Coping with NP hardness.
2.7.7 Finer explorations of time complexity
Chapter notes and history L oL
Exercises

Diagonalization
3.1 Time Hierarchy Theorem
3.2 Nondeterministic Time Hierarchy Theorem
3.3 Ladner’s Theorem: Existence of NP-intermediate problems
3.4 Oracle machines and the limits of diagonalization
3.4.1 Logical independence versus relativization
Chapter notes and history o
Exercises

Space complexity

4.1 Definition of space bounded computation
4.1.1 Configuration graphs.
4.1.2 Some space complexity classes. oL
4.1.3 Space Hierarchy Theorem

4.2 PSPACE completeness e
4.2.1 Savitch’s theorem o
4.2.2 The essence of PSPACE: optimum strategies for game-playing

4.3 NL completeness L
4.3.1 Certificate definition of NL: read-once certificates
432 NL=coNL e

Chapter notes and history L oL

Exercises e

The Polynomial Hierarchy and Alternations
5.1 Theclass 35
5.2 The polynomial hierarchy.
5.2.1 Properties of the polynomial hierarchy..
5.2.2 Complete problems for levelsof PH
5.3 Alternating Turing machines
5.3.1 Unlimited number of alternations
5.4 Time versus alternations: time-space tradeoffs for SAT
5.5 Defining the hierarchy via oracle machines.
Chapter notes and history
Exercises

Boolean Circuits
6.1 Boolean circuits and P/, - - o o o oo
6.1.1 Relation between P/, and P
6.1.2 Circuit Satisfiability and an alternative proof of the Cook-Levin The-
03 Y
6.2 Uniformly generated circuits o oL

Contents xiii

6.2.1 Logspace-uniform families 000 100

6.3 Turing machines that take advice L. 100
6.4 P/g,and NP 000000 101
6.5 Circuit lower bounds 102
6.6 Non-uniform hierarchy theorem 103
6.7 Finer gradations among circuit classes oo 104
6.7.1 The classes NC and AC 105
6.7.2 P-completeness 105

6.8 Circuits of exponential sizeo 106
Chapter notes and history o 107
Exercises 107
7 Randomized Computation 109
7.1 Probabilistic Turing machines 110
7.2 Some examples of PTMs 112
7.2.1 Findingamedian Lo L 112

7.2.2 Probabilistic Primality Testing 113
7.2.3 Polynomial identity testing oL 114
7.2.4 Testing for perfect matching in a bipartite graph. 115

7.3 One-sided and “zero-sided” error: RP, coRP,ZPP 115
7.4 The robustness of our definitions 116
7.4.1 Role of precise constants: error reduction. 116
7.4.2 Expected running time versus worst-case running time. 117
7.4.3 Allowing more general random choices than a fair random coin. 117

7.5 Relationship between BPP and other classes 119
751 BPPCP g, - oo 119
752 BPPisinPH 120
7.5.3 Hierarchy theorems and complete problems? 121

7.6 Randomized reductions 122
7.7 Randomized space-bounded computation 122
Chapter notes and history 123
Exercises e 124
8 Interactive proofs 127
8.1 Interactive proofs: some variations 127
8.1.1 Warmup: Interactive proofs with deterministic verifier and prover . . 128
8.1.2 The class IP: probabilistic verifier 129
8.1.3 Interactive proof for graph non-isomorphism. 131

8.2 Public coinsand AM e 133
8.2.1 Simulating private coins oo 133
8.2.2 Set Lower Bound Protocol. 134
8.2.3 Sketch of proof of Theorem 8.12 138
8.2.4 Can Gl be NP-complete?, 138

8.3 TP =PSPACE e e 139
8.3.1 Arithmetization 140
8.3.2 Interactive protocol for #SAT 140
8.3.3 Protocol for TQBF: proof of Theorem 8.19 142

8.4 The power of the prover 143
8.5 Multiprover interactive proofs (MIP) 144
8.6 Program Checking 145
8.6.1 Languages that have checkers 146
8.6.2 Random Self Reducibility and the Permanent 146

8.7 Imteractive proof for the Permanent 147
8.7.1 The protocol 148
Chapter notes and history 149

Exercises e 150

Xiv Contents

9 Cryptography 151
9.1 Perfect secrecy and its limitations 152
9.2 Computational security, one-way functions, and pseudorandom generators . . 153

9.2.1 One way functions: definition and some examples 155
9.2.2 Encryption from one-way functions 156
9.2.3 Pseudorandom generators 157
9.3 Pseudorandom generators from one-way permutations 158
9.3.1 Unpredictability implies pseudorandomness 158
9.3.2 Proof of Lemma 9.10: The Goldreich-Levin Theorem 160
9.4 Zeroknowledge 163
9.5 Some applications 165
9.5.1 Pseudorandom functions o000 166
9.5.2 Derandomization Lo 167
9.5.3 Tossing coins over the phone and bit commitment 168
9.5.4 Secure multiparty computations L. 168
9.5.5 Lower bounds for machine learning 169
Chapter notes and history 169
Exercises e 171

10 Quantum Computation 175
10.1 Quantum weirdness: the 2-slit experiment L. 176
10.2 Quantum superposition and qubitso o oo 178

10.2.1 EPR paradox 179
10.3 Definition of quantum computation and BQP 182
10.3.1 Some necessary linear algebra 182
10.3.2 The quantum register and its state vector 183
10.3.3 Quantum operations 183
10.3.4 Some examples of quantum operations 183
10.3.5 Quantum computation and BQP 185
10.3.6 Quantum circuits 187
10.3.7 Classical computation as a subcase of quantum computation 187
10.3.8 Universal operations o 187
10.4 Grover’s search algorithm. 0oL 188
10.5 Simon’s Algorithm 192
10.5.1 Proof of Theorem 10.14 192
10.6 Shor’s algorithm: integer factorization using quantum computers 193
10.6.1 The Fourier transform over Zas 194
10.6.2 Quantum Fourier Transform over Zp; 195
10.6.3 Shor’s Order-Finding Algorithm. 196
10.6.4 Reducing factoring to order finding. 199
10.6.5 Rational approximation of real numbers 200
10.7 BQP and classical complexity classes 200
10.7.1 Quantum analogs of NP and AM 201
Chapter notes and history 202
Exercises 203

11 PCP Theorem and Hardness of Approximation: An introduction 205
11.1 Motivation: approximate solutions to NP-hard optimization problems 206
11.2 Two views of the PCP Theorem. 207

11.2.1 PCP Theorem and locally testable proofs 207
11.2.2 PCP and Hardness of Approximation 210
11.3 Equivalence of the two views, 211
11.3.1 Equivalence of theorems 11.5 and 11.9.. 212
11.3.2 Review of the two views of the PCP Theorem 213
11.4 Hardness of approximation for vertex cover and independent set 213
11.5 NP C PCP(poly(n),1): PCP from the Walsh-Hadamard code 215

11.5.1 Tool: Linearity Testing and the Walsh-Hadamard Code 215

Contents XV

11.5.2 Proof of Theorem 11.19 217
Chapter notes and history o 219
Exercises 220

II Lower bounds for Concrete Computational Models 221
12 Decision Trees 223
12.1 Decision trees and decision tree complexity 223
12.2 Certificate Complexity e 225
12.3 Randomized Decision Trees 227
12.4 Some techniques for decision tree lower bounds 228
12.5 Lower bounds on Randomized Complexity 228

12.5.1 Sensitivity 228

12.5.2 The degree method oL oL 230
Chapter notes and history 231
Exerciseso 231

13 Communication Complexity 233
13.1 Definition of two-party communication complexity. 233
13.2 Lower bound methods 234

13.2.1 The fooling set method oL 235

13.2.2 The tiling method o 235

13.2.3 The rank method 237

13.2.4 The discrepancy method oL oL 237

13.2.5 A technique for upper bounding the discrepancy 238

13.2.6 Comparison of the lower bound methods 239
13.3 Multiparty communication complexity 239
13.4 Overview of other communication models 242
Chapter notes and history 243
Exercises 244

14 Circuit lower bounds 247
14.1 ACY and Hastad’s Switching Lemmao 247

14.1.1 Hastad’s switching lemma L. 248

14.1.2 Proof of the switching lemma (Lemma 14.2) 249
14.2 Circuits With “Counters”™: ACC 251
14.3 Lower bounds for monotone circuits L. 253

14.3.1 Proving Theorem 14.7 oo 254
14.4 Circuit complexity: The frontier 256

14.4.1 Circuit lower bounds using diagonalization 256

14.4.2 Status of ACC versus P. o 257

14.4.3 Linear Circuits With Logarithmic Depth 257

14.4.4 Branching Programs 258
14.5 Approaches using communication complexity 259

14.5.1 Connection to ACCO Circuits 259

14.5.2 Connection to Linear Size Logarithmic Depth Circuits 260

14.5.3 Connection to branching programs 260

14.5.4 Karchmer-Wigderson communication games and depth lower bounds . 260
Chapter notes and history 262

Exercises s 263

XVi Contents

15 Proof complexity 265
15.1 Some examples 265
15.2 Propositional calculus and resolution 000 266

15.2.1 Lower bounds using the bottleneck method 267
15.2.2 Interpolation theorems and exponential lower bounds for resolution . . 268
15.3 Other proof systems: a tour d’horizon 270
15.4 Metamathematical musings L Lo 271
Chapter notes and history 272
Exercises 273

16 Algebraic computation models 275

16.1 Algebraic straight-line programs and algebraic circuits 276
16.1.1 Algebraic straight line programs 276
16.1.2 Examples 277
16.1.3 Algebraic circuits oL 278
16.1.4 Analogs of P, NP for algebraic circuits 279

16.2 Algebraic Computation Trees 281
16.2.1 The topological method for lower bounds 284

16.3 The Blum-Shub-Smale Model, 286
16.3.1 Complexity Classes over the Complex Numbers 287
16.3.2 Complete problems and Hilbert’s Nullstellensatz 288
16.3.3 Decidability Questions: Mandelbrot Set 288

Chapter notes and history 289

Exercises e 290

IIT Advanced topics 293

17 Complexity of counting 295
17.1 Examples of Counting Problems 295

17.1.1 Counting problems and probability estimation 296
17.1.2 Counting can be harder than decision 297

17.2 The class #EP« . o 297
17.2.1 The class PP: decision-problem analog for #P. 298

17.3 #P completeness. 299
17.3.1 Permanent and Valiant’s Theorem 299
17.3.2 Approximate solutions to #P problems 304

17.4 Toda’s Theorem: PH C P#SAT . 305
17.4.1 A detour: Boolean satisfiability with unique solutions 306
17.4.2 Properties of @ and proof of Lemma 17.17 for NP, coNP 307
17.4.3 Proof of Lemma 17.17; general case 308
17.4.4 Step 2: Making the reduction deterministic 309

17.5 Open Problems 310

Chapter notes and history 310

Exerciseso 311

18 Average Case Complexity: Levin’s Theory 313
18.1 Distributional Problems and distP 314
18.2 Formalization of “real-life distributions” 316
18.3 distNP and its complete problems 317

18.3.1 A complete problem for distNP 318
18.3.2 P-samplable distributionso 319
18.4 Philosophical and practical implications 320
Chapter notes and history 321

Exercises s 321

Contents xvii

19 Hardness Amplification and Error Correcting Codes 323
19.1 Mild to strong hardness: Yao’s XOR Lemma. 324
19.1.1 Proof of Yao’s XOR Lemma using Impagliazzo’s Hardcore Lemma. . . 326
19.1.2 Proof of Impagliazzo’s Lemma 327

19.2 Tool: Error correcting codes 329
19.2.1 Explicit codes 330
19.2.2 Walsh-Hadamard Code. 331
19.2.3 Reed-Solomon Code 331
19.2.4 Reed-Muller Codes. 332
19.2.5 Concatenated codes 332

19.3 Efficient decoding. Lo 333
19.3.1 Decoding Reed-Solomon 333
19.3.2 Decoding concatenated codes. oL 334

19.4 Local decoding and hardness amplification 335
19.4.1 Local decoder for Walsh-Hadamard. 336
19.4.2 Local decoder for Reed-Muller 337
19.4.3 Local decoding of concatenated codes. 338
19.4.4 Putting it all together.o 339

19.5 List decoding 340
19.5.1 List decoding the Reed-Solomon code 341

19.6 Local list decoding: gettingto BPP=P. 342
19.6.1 Local list decoding of the Walsh-Hadamard code. 342
19.6.2 Local list decoding of the Reed-Muller code 342
19.6.3 Local list decoding of concatenated codes. 344
19.6.4 Putting it all together.o oo 344
Chapter notes and history Lo 345
Exercises e 346
20 Derandomization 349
20.1 Pseudorandom Generators and Derandomization 350
20.1.1 Derandomization using pseudorandom generators 351
20.1.2 Hardness and Derandomization 352

20.2 Proof of Theorem 20.6: Nisan-Wigderson Construction 353
20.2.1 Two toy exampleso 354
20.2.2 The NW Construction 355

20.3 Derandomization under uniform assumptions 358
20.4 Derandomization requires circuit lower bounds 359
Chapter notes and history o Lo 362
Exercises 363
21 Pseudorandom constructions: expanders and extractors 365
21.1 Random walks and eigenvalues, 366
21.1.1 Distributions as vectors and the parameter A(G). 366
21.1.2 Analysis of the randomized algorithm for undirected connectivity. . . 369

21.2 Expander graphs.o 369
21.2.1 The Algebraic Definition, 370
21.2.2 Combinatorial expansion and existence of expanders. 370
21.2.3 Algebraic expansion implies combinatorial expansion. 371
21.2.4 Combinatorial Expansion Implies Algebraic Expansion 372
21.2.5 Error reduction using expanders. 373

21.3 Explicit construction of expander graphs 375
21.3.1 Rotation maps. e 375
21.3.2 The matrix/path product L. 376
21.3.3 The tensor product 376
21.3.4 The replacement product 377
21.3.5 The actual construction. 379

21.4 Deterministic logspace algorithm for undirected connectivity. 380

Xviii

Contents

21.4.1 The logspace algorithm for connectivity (proof of Theorem 21.21). . . 381

21.5 Weak Random Sources and Extractors 382
21.5.1 Min Entropyo 382
21.5.2 Statistical distance oo 383
21.5.3 Definition of randomness extractors 383
21.5.4 Existence proof for extractors. 384
21.5.5 Extractors based on hash functions 000 385
21.5.6 Extractors based on random walks on expanders 385
21.5.7 Extractors from pseudorandom generators 386

21.6 Pseudorandom generators for space bounded computation 388

Chapter notes and history o 391

Exerciseso 393

22 Proofs of PCP Theorems and the Fourier Transform Technique 397

22.1 Constraint satisfaction problems with non-binary alphabet 397

22.2 Proof of the PCP Theorem 398
22.2.1 Proof outline for the PCP Theorem. 398
22.2.2 Dinur’s Gap Amplification: Proof of Lemma 22.5 399
22.2.3 Expanders, walks, and hardness of approximating INDSET 400
22.2.4 Dinur’s Gap-amplificationo 401
22.2.5 Alphabet Reduction: Proof of Lemma 22.6 405

22.3 Hardness of 2CSPyy: Tradeoff between gap and alphabet size 407
22.3.1 Idea of Raz’s proof: Parallel Repetition 408

22.4 Hastad’s 3-bit PCP Theorem and hardness of MAX-3SAT 408
22.4.1 Hardness of approximating MAX-3SAT 409

22.5 Tool: the Fourier transform technique 410
22.5.1 Fourier transform over GF(2)™ 410
22.5.2 The connection to PCPs: High level view 411
22.5.3 Analysis of the linearity test over GF(2) 411

22.6 Coordinate functions, Long code and its testing 412

22.7 Proof of Theorem 22.16 415

22.8 Hardness of approximating SET-COVER 418

22.9 Other PCP Theorems: A Survey 420
22.9.1 PCP’s with sub-constant soundness parameter 420
22.9.2 Amortized query complexity 420
22.9.3 2-bit tests and powerful fourier analysis 421
22.9.4 Unique games and threshold results 421
22.9.5 Connection to Isoperimetry and Metric Space Embeddings 422

Chapter notes and history L o 422

Exerciseso e 423

22.A Transforming ¢CSP instances into “nice” instances. 426

23 Why are circuit lower bounds so difficult? 429

23.1 Definition of natural proofs L 429

23.2 What’s so natural about natural proofs? 430
23.2.1 Why constructiveness? 431
23.2.2 Why largeness?o 432
23.2.3 Natural proofs from complexity measures 432

23.3 Proof of Theorem 23.1 433

23.4 An “unnatural” lower boundo 434

23.5 A philosophical view 435

Chapter notes and history L oL 436

Exercises e e 436

Contents xix
A Mathematical Background. 439
A.1 Sets, Functions, Pairs, Strings, Graphs, Logic. 439
A.2 Probability theory 441
A.2.1 Random variables and expectations., .. 441

A.2.2 The averaging argument 442

A.2.3 Conditional probability and independence 443

A.2.4 Deviation upper bounds 444

A.2.5 Some other inequalities. 445

A.2.6 Statistical distance Lo L 446

A.3 Number theory and groups 447
A3.1 Groups. 448

A3.2 Finite groups 448

A.3.3 The Chinese Remainder Theorem 449

A4 Finite fields 450
A4.1 Non-prime fields. 450

A.5 Basic facts from linear algebra L. 451
A5.1 Inmer product 452

A5.2 Dotproduct. L 453

A.5.3 Eigenvectors and eigenvalues L. 453

AB5.4 Norms oo 454

A5.5 Metric spaces 455

A6 Polynomials 455
Hints for selected exercises 457
Main Theorems and Definitions 467
Bibliography 471

XX

Contents

Introduction

“As long as a branch of science offers an abundance of problems, so long it is
alive; a lack of problems foreshadows extinction or the cessation of independent
development.”

David Hilbert, 1900

“The subject of my talk is perhaps most directly indicated by simply asking
two questions: first, is it harder to multiply than to add? and second, why?...1
(would like to) show that there is no algorithm for multiplication computation-
ally as simple as that for addition, and this proves something of a stumbling
block.”

Alan Cobham, 1964

The notion of computation has existed in some form for thousands of years, in contexts
as varied as routine account-keeping and astronomy. Here are three examples of tasks that
we may wish to solve using computation:

e Given two integer numbers, compute their product.
e Given a set of n linear equations over n variables, find a solution if it exists.

e Given a list of acquaintances and a list of all pairs among them who do not get along,
find the largest set of acquaintances you can invite to a dinner party such that every
two invitees get along with one another.

Throughout history people had a notion of a process of producing an output from a set
of inputs in a finite number of steps, and thought of “computation” as “a person writing
numbers on a scratch pad following certain rules.”

One of the important scientific advances in the first half of the 20th century was that
the notion of “computation” received a much more precise definition. From this definition
it quickly became clear that computation can happen in diverse physical and mathematical
systems —Turing machines, lambda calculus, cellular automata, pointer machines, bouncing
billiards balls, Conway’s Game of life, etc.. Surprisingly, all these forms of computation are
equivalent —in the sense that each model is capable of implementing all computations that
we can conceive of on any other model (see Chapter 1). This realization quickly led to the
invention of the standard universal electronic computer, a piece of hardware that is capable of
executing all possible programs. The computer’s rapid adoption in society in the subsequent
decades brought computation into every aspect of modern life, and made computational
issues important in design, planning, engineering, scientific discovery, and many other human
endeavors. Computer algorithms, which are methods of solving computational problems,
became ubiquitous.

But computation is not “‘merely” a practical tool. It is also a major scientific concept.
Generalizing from physical models such as cellular automata, scientists now view many nat-
ural phenomena as akin to computational processes. The understanding of reproduction in
living things was triggered by the discovery of self-reproduction in computational machines.
(In fact, a book by the physicist Schrodinger [Sch44] predicted the existence of a DNA-like
substance in cells before Watson and Crick discovered it, and was credited by Crick as an
inspiration for that research.) Today, computational models underlie many research areas
in biology and neuroscience. Several physics theories such as QED give a description of

2 Contents

nature that is very reminiscent of computation, motivating some scientists to even suggest
that the entire universe may be viewed as a giant computer (see Lloyd [Llo06]). In an inter-
esting twist, such physical theories have been used in the past decade to design a model for
quantum computation; see Chapter 10.

Computability versus complexity. After their success in defining computation, researchers
focused on understanding what problems are computable. They showed that several inter-
esting tasks are inherently uncomputable: no computer can solve them without going into
infinite loops (i.e., never halting) on certain inputs. Though a beautiful topic, computability
will not be our focus in this book. We discuss it briefly in Chapter 1 and refer the reader to
standard texts [Sip96, HMUO1, Koz97, Rog87] for more details. Instead, we focus on computa-
tional complexity theory, which focuses on issues of computational efficiency —quantifying
the amount of computational resources required to solve a given task. Below, we describe
at an informal level how one can quantify “efficiency,” and after that discuss some of the
issues that arise in connection with its study.

Quantifying computational efficiency

To explain what we mean by computational efficiency, we use the three examples of com-
putational tasks we mentioned above. We start with the task of multiplying two integers.
Consider two different methods (or algorithms) to perform this task. The first is repeated
addition: to compute a - b, just add a to itself b — 1 times. The other is the grade-school al-
gorithm illustrated in Figure 1. Though the repeated addition algorithm is perhaps simpler
than the grade-school algorithm, we somehow feel that the latter is better. Indeed, it is much
more efficient. For example, multiplying 577 by 423 using repeated addition requires 422
additions, whereas doing it with the grade-school algorithm 3 multiplications of a number
by a single digit and 3 additions.

5 77
4 2 3
1 7 3 1
1 1 5 4
2 3 0 8
2 4 4 0 7 1

Figure 1 Grade-school algorithm for multiplication. Illustrated for computing 577 - 423.

We will quantify the efficiency of an algorithm by studying how its number of basic
operations scales as we increase the size of the input. For this discussion, let the basic
operations be addition and multiplication of single digits. (In other settings, we may wish
to throw in division as a basic operation.) The size of the input is the number of digits
in the numbers. The number of basic operations used to multiply two n-digit numbers
(i.e., numbers between 10! and 10") is at most 2n? for the grade-school algorithm and
at least n10"~! for repeated addition. Phrased this way, the huge difference between the
two algorithms is apparent: even for 11-digit numbers, a pocket calculator running the
grade-school algorithm would beat the best current supercomputer running the repeated
addition algorithm. For slightly larger numbers even a fifth grader with pen and paper
would outperform a supercomputer. We see that the efficiency of an algorithm is to a
considerable extent much more important than the technology used to execute it.

Surprisingly enough, there is an even faster algorithm for multiplication that uses the
Fast Fourier Transform. It was only discovered some 40 years ago and multiplies two n-digit
numbers using cnlognloglogn operations where ¢ is some absolute constant independent
of n; see Chapter 16. We call such an algorithm an O(nlognloglogn)-step algorithm: see

Contents 3

our notational conventions below. As n grows, this number of operations is significantly
smaller than n?2.

For the task of solving linear equations, the classic Gaussian elimination algorithm
(named after Gauss but already known in some form to Chinese mathematicians of the
first century) uses O(n?) basic arithmetic operations to solve n equations over n variables.
In the late 1960’s, Strassen found a more efficient algorithm that uses roughly O(n?3!)
operations, and the best current algorithm takes O(n?-37%) operations (see Chapter 16).

The dinner party task also has an interesting story. As in the case of multiplication,
there is an obvious and simple inefficient algorithm: try all possible subsets of the n people
from the largest to the smallest, and stop when you find a subset that does not include any
pair of guests who don’t get along. This algorithm can take as much time as the number of
subsets of a group of n people, which is 2. This is highly unpractical —an organizer of, say,
a 70-person party, would need to plan it at least a thousand years in advance, even if she has
a supercomputer at her disposal. Surprisingly, we still do not know of a significantly better
algorithm for this task. In fact, as we will see in Chapter 2, we have reasons to suspect that
no efficient algorithm ezists, since this task turns out to be equivalent to the independent
set computational problem, which, together with thousands of other important problems,
is NP-complete. The famous “P versus NP” question (Chapter 2) asks whether or not any
of these problems has an efficient algorithm.

Proving nonexistence of efficient algorithms

We have seen that sometimes computational tasks turn out to have nonintuitive algorithms
that are more efficient than algorithms used for thousands of years. It would therefore be
really interesting to prove for some computational tasks that the current algorithm is the
best —in other words, no better algorithms exist. For instance, we could try to prove that
the O(nlognloglogn)-step algorithm for multiplication cannot be improved upon (thus
implying that multiplication is inherently more difficult than addition, which does have an
O(n)-step algorithm). Or, we could try to prove that there is no algorithm for the dinner
party task that takes fewer than 2/10 steps. Trying to prove such results is a central goal
of complexity theory.

How can we ever prove such a nonexistence result? There are infinitely many possible
algorithms! So we have to mathematically prove that each one of them is less efficient that
the known algorithm. This may be possible to do, because computation is a mathematically
precise notion. In fact, this kind of result (if proved) would fit into a long tradition of
impossibility results in mathematics, such as the independence of Euclid’s parallel postulate
from the other basic axioms of geometry, or the impossibility of trisecting an arbitrary angle
using a compass and straightedge. Such results count among the most interesting, fruitful,
and surprising results in mathematics.

In complexity theory, we are still only rarely able to prove such nonexistence of algo-
rithms. We do have important nonexistence results in some concrete computational mod-
els that are not as powerful as general computers, which are described in Part II of the
book. Since we are still missing good results for general computers, one important source
of progress in complexity theory is our stunning success in interrelating different complexity
questions, and the rest of the book is filled with examples of these.

Some interesting questions about computational efficiency

Now we give an overview of some important issues regarding computational complexity, all
of which will be treated in greater detail in later chapters. An overview of mathematical
background is given in Appendix A.

4 Contents

1. Computational tasks in a variety of disciplines such as the life sciences, social sciences
and operations research involve searching for a solution across a vast space of possibil-
ities (for example, the aforementioned tasks of solving linear equations and finding a
maximal set of invitees to a dinner party). This is sometimes called exhaustive search,
since the search exhausts all possibilities. Can this exhaustive search be replaced by a
more efficient search algorithm?

As we will see in Chapter 2, this is essentially the famous “P vs. NP” question,
considered the central problem of complexity theory. Many interesting search problems
are NP-complete, which means that if the famous conjecture P # NP is true, then
these problems do not have efficient algorithms; they are inherently intractable.

2. Can algorithms use randomness (i.e., coin tossing) to speed up computation?

Chapter 7 introduces randomized computation and describes efficient probabilistic al-
gorithms for certain tasks. But Chapters 19 and 20 show a surprising recent result
giving strong evidence that randomness does not help speed up computation too much,
in the sense that any probabilistic algorithm can be replaced with a deterministic al-
gorithm (tossing no coins) that is almost as efficient.

3. Can hard problems become easier to solve if we allow the algorithms to err on a small
number of inputs, or to only compute an approzimate solution?

Average-case complezity and approximation algorithms are studied in Chapters 11, 18,
19, and 22. These chapters also show fascinating connections between these questions,
the power of randomness, different notions of mathematical proofs, and the theory of
error correcting codes.

4. Can we derive any practical benefit from computationally hard problems? For exam-
ple, can we use them to construct cryptographic protocols that are unbreakable (at
least by any plausible adversary)?

As described in Chapter 9, the security of digital cryptography is intimately related to
the P vs. NP question (see Chapter 2) and average-case complexity (see Chapters 18).

5. Can we use the counterintuitive quantum mechanical properties of matter to build
faster computers?

Chapter 10 describes the fascinating notion of quantum computers that use quantum
mechanics to speed up certain computations. Peter Shor has shown that, if ever built,
quantum computers will be able to factor integers efficiently (thus breaking many
current cryptosystems). However, currently there are many daunting obstacles to
actually building such computers,

6. Do we need people to prove mathematical theorems, or can we generate mathematical
proofs automatically? Can we check a mathematical proof without reading it com-
pletely? Do interactive proofs, involving a dialog between prover and verifier, have
more power than standard “static” mathematical proofs?

The notion of proof, central to mathematics, turns out to be central to computational
complexity as well, and complexity has shed new light on the meaning of mathemat-
ical proofs. Whether mathematical proofs can be generated automatically turns out
to depend on the P vs. NP question (see Chapter 2). Chapter 11 describes proba-
bilistically checkable proofs. These are surprisingly robust mathematical proofs that
can checked by only reading them in very few probabilistically chosen locations, in
contrast to the traditional proofs that require line-by-line verification. Along similar
lines we introduce the notion of interactive proofs in Chapter 8 and use them to derive
some surprising results. Finally, proof complezity, a subfield of complexity studying
the minimal proof length of various statements, is studied in Chapter 15.

At roughly 40 years of age, Complexity theory is still an infant science and many im-
portant results are less than 20 years old. We have few complete answers for any of these
questions. In a surprising twist, computational complexity has also been used to prove some

Contents 5

metatmathematical theorems: they provide evidence of the difficulty of resolving some of
the questions of ... computational complexity; see Chapter 23.

We conclude with another quote from Hilbert’s 1900 lecture:

Proofs of impossibility were effected by the ancients ... [and] in later mathemat-
ics, the question as to the impossibility of certain solutions plays a preminent
part. ...

In other sciences also one meets old problems which have been settled in a manner
most satisfactory and most useful to science by the proof of their impossibility.
... After seeking in vain for the construction of a perpetual motion machine, the
relations were investigated which must subsist between the forces of nature if such
a machine is to be impossible; and this inverted question led to the discovery of
the law of the conservation of energy. ...

It is probably this important fact along with other philosophical reasons that gives
rise to conviction ... that every definite mathematical problem must necessarily
be susceptible to an exact settlement, either in the form of an actual answer to the
question asked, or by the proof of the impossibility of its solution and therewith
the necessary failure of all attempts. ... This conviction... is a powerful incentive
to the worker. We hear within us the perpetual call: There is the problem. Seek
its solution. You can find it by pure reason, for in mathematics there is no
ignorance.

Main Theorems and Definitions

Definition 1.3:
Theorem 1.9:
Definition 1.13:
Definition 2.1:
Definition 2.7:
Theorem 2.10:
Theorem 3.1:
Theorem 3.2:
Theorem 3.3:
Theorem 3.7:
Definition 4.1:
Theorem 4.8:
Theorem 4.13:
Theorem 4.14:
Definition 4.16:
Theorem 4.18:
Theorem 4.20:
Definition 5.3:
Definition 5.7:
Theorem 5.11:
Definition 6.1:
Definition 6.5:
Theorem 6.6:
Theorem 6.18:
Theorem 6.19:
Theorem 6.20:
Theorem 6.21:
Theorem 6.22:

Computing a function and running time 19
Efficient Universal Turing machine..........o .. 23
The class P 26
The class NP ..o 38
Reductions, NP-hardness and NP-completeness...................... 41
Cook-Levin Theorem [CooTl, Lev73].....vvutiuiit i, 43
Time Hierarchy Theorem [HS65]........ovuuiiiiiiii .. 62
Non-deterministic Time Hierarchy Theorem [Coo72] 62
“INP intermediate” languages [Lad75]..........ovuiiiiiiiniiniinnn. .. 64
Baker, Gill, Solovay [BGST5]ttt 66
Space-bounded computation..............oiiiiii i 71
Space Hierarchy Theorem [SHL65] ooveeineen e 75
TQBF is PSPACE-complete [SM73]. . .vvvuiiiiiiiiiiiieeene, 76
Savitch’s Theorem [Sav70]: NSPACE(S(n)) € SPACE(S(n)?) 7
logspace reduction and NL-completeness.............................. 79
PATH is NL-complete.o 80
Immerman-Szelepcsényi Theorem [Imm88, Sze87]: NL = coNL......... 82
Polynomial Hierarchy 87
Alternating timettt 89
Time/Space tradeoff for SAT [For97a, FLYMVOO0]ouvuvrenennenn. .. 90
Boolean circuitso 96
The class Pyoopy «vvveeee 97
e 98
Polynomial-time TM’s with advice decide Py g, o oovvovviiiiiiin. 101
Karp-Lipton Theorem [KL80J........oouiiuiiiiii i 101
Meyer’s Theorem [KL80Jouutntetieiti e 102
Existence of hard functions [Sha49a] i, 102

Non-uniform hierarchy theorem.......... 103

468

A Mathematical Background.

Theorem 6.27:
Definition 7.2:
Theorem 7.10:
Theorem 7.14:
Theorem 7.15:
Definition 7.18:
Definition 8.6:
Theorem 8.12:
Definition 8.14:
Theorem 8.19:
Definition 9.3:
Definition 9.4:
Theorem 9.6:
Definition 9.8:
Theorem 9.9:
Theorem 9.11:
Theorem 9.12:
Definition 9.14:
Definition 10.6:
Definition 10.9:
Theorem 10.12:
Theorem 10.13:
Theorem 10.14:
Theorem 10.15:
Lemma 10.17:
Definition 11.1:
Definition 11.4:
Theorem 11.5:
Theorem 11.9:

Definition 11.11:

Theorem 11.19:
Definition 12.1:
Definition 12.3:
Definition 12.6:
Definition 13.1:

NC and parallel algorithms.......o . i i 105
The classes BPTIME and BPP 111
Error reduction for BPP ... o 116
BPP C P/, [AdIT8] ..o 119
Sipser-Gdcs Theorem: BPP C X0 NTIS. ..., 120
The classes BPL and RL ... i 122
Probabilistic verifiers and the class IP 130
Goldwasser-Sipser [GS87]: IP[k] CAM[E+2] ..., 134
Pairwise independent hash functions.............. 135
IP in PSPACE [LFKN90, Shad0]uvtutittit ittt 139
Negligible functions......... ... i 154
One way functions........... i 155
Encryption from one-way function............... 156
Secure pseudorandom generators...............oviiiiiiiiiiiiiii... 158
Pseudorandom generators from one-way functions [HILL99] 158
Unpredictability implies pseudorandomness [Yao82a] 159
Goldreich-Levin Theorem [GL89]vvuttiii it 160
Zero knowledge proofs....... ... 164
QUANtUM OPETationo 183
Quantum Computation and the class BQP 186
Universal basis for quantum operations [Deu89, Kit97] 188
Grover’s Algorithm [Gro96]o 188
Simon’s Algorithm [Sim94]........oiuiii i e 192
Shor’s Algorithm: Factoring in BQP [Sho97] ...t 194
Quantum Fourier Transform [BV93] ...t 196
Approximation of MAX-3SAT ... 206
PCP verifier ... 209
The PCP Theorem [AS92, ALM™TO2] ...ttt 209
PCP Theorem: Hardness of Approximation view.................... 210
Constraint satisfaction problems (CSP)..................oo.. 211
Exponential-sized PCP system for NP [ALM*t92] 215
Decision tree complexityo i 224
Certificate complexity ... 226
Randomized decision trees......... ... i 227

Two party communication complexity 234

A.6 Polynomials

Theorem 13.4:
Theorem 13.8:
Theorem 13.24:
Theorem 14.1:
Lemma 14.2:
Theorem 14.4:
Theorem 14.7:
Theorem 15.3:
Theorem 15.4:
Theorem 15.5:
Definition 16.2:
Definition 16.7:
Theorem 16.12:
Definition 16.15:
Definition 16.16:
Theorem 16.19:
Definition 17.5:
Theorem 17.11:
Theorem 17.14:
Definition 17.16:
Lemma 17.17:
Theorem 17.18:
Definition 18.1:
Definition 18.4:
Definition 18.5:
Definition 18.6:
Theorem 18.8:
Definition 19.1:
Theorem 19.2:
Definition 19.5:
Theorem 19.15:
Definition 19.16:
Theorem 19.17:
Theorem 19.21:
Theorem 19.24:

Equality has linear communication complexity 235
Tiling and communication complexity [AUYS83]c.oooi.t. 236
Lower bound for generalized inner product 241
D & AC [FSS8I, AJt83] . vt v e et ettt e e e 248
Hastad’s switching lemma [HASS6]ovvvvniniii i, 248
Razborov-Smolensky [Raz87, Smos7]: MOD, & ACCO(q) 251
Monotone-circuit lower bound for CLIQUE [Raz85a, And85, ABS87] 253
Classical Interpolation Theoremo .. 268
Feasible Interpolation Theorem 269
Exponential resolution lower bound............. 270
Algebraic straight-line program over F...........o . 276
AlgP/ o AIGNP, oo 279
Completeness of determinant and permanent [Val79a]................. 281
Algebraic Computation Tree over R.........o.oooiiiiiiii. 283
algebraic computation tree complexity i 283
Topological lower bound on algebraic tree complexity [BO83] 284
FEP 298
Valiant’s Theorem [Val79b]: perm is #£P-complete 300
Toda’s Theorem [Todo1]: PH C P#SAT 305
P quantifier and @ SAT ... 305
Randomized reduction from PH to @ SATt 305
Valiant-Vazirani Theorem [VV86].. 306
Distributional problem......... ... 314
Polynomial on average and distPo 316
The class distNP 317
Average-case 1edUctionoutiii i e 317
Existence of a distNP-complete problem [Lev86]...................... 318
Average-case and worst-case hardness......................oia. 325
Yao’s XOR Lemma [Yao82a]vuutiutiiiit i 325
Error Correcting Codes. 329
Unique decoding for Reed-Solomon [BWS86]ccoviiiiin... 333
Local decoder. ..o 335
Hardness amplification from local decoding 336
Worst-case hardness to mild hardness............... 339
List decoding for the Reed-Solomon code [Sud96] 341

470

A Mathematical Background.

Theorem 19.27:
Definition 20.2:
Theorem 20.6:
Theorem 20.7:
Definition 20.12:
Theorem 20.16:
Theorem 20.17:
Definition 21.2:
Definition 21.6:
Definition 21.7:
Theorem 21.9:
Theorem 21.12:
Theorem 21.15:
Theorem 21.19:
Theorem 21.21:
Definition 21.24:
Theorem 21.28:
Theorem 21.31:
Lemma 22.4:
Lemma 22.5:
Lemma 22.6:
Theorem 22.16:
Theorem 23.1:
Theorem 23.8:

Worst-case hardness to strong hardness................... 344
Pseudorandom generators...........oouuiiiiiiiiii i 350
PRGs from average-case hardness..................ocoiiiiii ... 353
Derandomization under worst-case assumptions...................... 353
NW Generator. e 356
Uniform derandomization [TW98]coiiiiiiiiiiiiinnnan.. 358
Derandomization implies lower bounds [KI03].............. 360
The parameter A((G).ooini 367
(n,d, N)-expander graphis.ueuiuiiii 370
Combinatorial (edge) expansion..............cooviiiiniiiiininan.. 370
Combinatorial vs. algebraic expansionoouo.... 371
Expander walks 374
Expander Chernoff Bound 375
Explicit construction of expanders.............. 379
Reingold’s Theorem: UPATH e Li...... ... i 380
Randomness extractors ... i 384
Constructive version of Theorem 20.7..........o .. 387
Nisan’s pseudorandom generator [Nis90]ouuuiiiuiennn.... 388
PCP Main Lemma 398
Gap Amplification [Din06]ouuiuiiniit i 399
Alphabet Reductionooiiiii e 399
Hastad’s 3-bit PCP [HASIT] . ..o vvvttt it 409
Natural proofs [RRO4] e 430

PromiseMA ¢ SIZE(n®) [San07]........uuuiiieeiiiiiiiiiiaaaaaa... 435

