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About this book

Computational complexity theory has developed rapidly in the past three decades. The
list of surprising and fundamental results proved since 1990 alone could fill a book: these
include new probabilistic definitions of classical complexity classes (IP = PSPACE and
the PCP Theorems) and their implications for the field of approximation algorithms; Shor’s
algorithm to factor integers using a quantum computer; an understanding of why current
approaches to the famous P versus NP will not be successful; a theory of derandomization
and pseudorandomness based upon computational hardness; and beautiful constructions of
pseudorandom objects such as extractors and expanders.

This book aims to describe such recent achievements of complexity theory in the con-
text of more classical results. It is intended to both serve as a textbook and as a reference
for self-study. This means it must simultaneously cater to many audiences, and it is care-
fully designed with that goal. We assume essentially no computational background and
very minimal mathematical background, which we review in Appendix A. We have also
provided a web site for this book at http://www.cs.princeton.edu/theory/complexity/
with related auxiliary material including detailed teaching plans for courses based on this
book, a draft of all the book’s chapters, and links to other online resources covering related
topics. Throughout the book we explain the context in which a certain notion is useful, and
why things are defined in a certain way. We also illustrate key definitions with examples.
To keep the text flowing, we have tried to minimize bibliographic references, except when
results have acquired standard names in the literature, or when we felt that providing some
history on a particular result serves to illustrate its motivation or context. (Every chapter
has a notes section that contains a fuller, though still brief, treatment of the relevant works.)
When faced with a choice, we preferred to use simpler definitions and proofs over showing
the most general or most optimized result.

The book is divided into three parts:

Part I: Basic complexity classes. This part provides a broad introduction to the field.
Starting from the definition of Turing machines and the basic notions of computability
theory, it covers the basic time and space complexity classes, and also includes a few
more modern topics such as probabilistic algorithms, interactive proofs, cryptography,
quantum computers, and the PCP Theorem and its applications.

Part II: Lower bounds on concrete computational models. This part describes lower
bounds on resources required to solve algorithmic tasks on concrete models such as
circuits, decision trees, etc. Such models may seem at first sight very different from
Turing machines, but looking deeper one finds interesting interconnections.

Part III: Advanced topics. This part is largely devoted to developments since the late
1980s. It includes counting complexity, average case complexity, hardness amplifica-
tion, derandomization and pseudorandomness, the proof of the PCP theorem, and
natural proofs.

Almost every chapter in the book can be read in isolation (though Chapters 1, 2 and 7
must not be skipped). This is by design, because the book is aimed at many classes of
readers:

e Physicists, mathematicians, and other scientists. This group has become increasingly
interested in computational complexity theory, especially because of high-profile re-
sults such as Shor’s algorithm and the recent deterministic test for primality. This
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intellectually sophisticated group will be able to quickly read through Part I. Progress-
ing on to Parts IT and III they can read individual chapters and find almost everything
they need to understand current research.

o Computer scientists who do not work in complezity theory per se. They may use the
book for self-study, reference, or to teach an undergraduate or graduate course in
theory of computation or complexity theory.

o All those —professors or students— who do research in complexity theory or plan to do
so. The coverage of recent results and advanced topics is detailed enough to prepare
readers for research in complexity and related areas.

This book can be used as a textbook for several types of courses:

e Undergraduate Theory of Computation. Many Computer Science departments offer
an undergraduate Theory of Computation course, using say Sipser’s book [Sip96]. Our
text could be used to supplement Sipser’s book with coverage of some more modern
topics such as probabilistic algorithms, cryptography and quantum computing. Un-
dergraduate students may find these more exciting than traditional topics such as
automata theory and the finer distinctions of computability theory. The prerequisite
mathematical background would be some comfort with mathematical proofs and dis-
crete mathematics, as covered in the typical “discrete math” /“math for CS” courses
currently offered in many CS departments.

e Introduction to computational complexity for advanced undergrads/beginning grads.
The book can be used as a text for an introductory complexity course aimed at ad-
vanced undergraduate or graduate students in computer science (replacing books such
as Papadimitriou’s 1994 text [Pap94], that do not contain many recent results). Such
a course would probably include many topics from Part I and then a sprinkling from
Parts II and III, and assume some background in algorithms and/or the theory of
computation.

e Graduate Complexity course. The book can serve as a text for a graduate complexity
course that prepares graduate students for research in complexity theory or related
areas like algorithms, machine learning, etc. Such a course can use Part I to review
basic material, and then move on to the advanced topics of Parts IT and III. The book
contains far more material than can be taught in one term, and we provide on our
website several alternative outlines for such a course.

o Graduate seminars or advanced courses. Individual chapters from Parts II and III can
be used in seminars or advanced courses on various topics in complexity theory (e.g.,
derandomization, the PCP Theorem, lower bounds).

We provide several teaching plans and material for such courses on the book’s web site.
If you use the book in your course, we’d love to hear about it and get your feedback. We
ask that you do not publish solutions for the book’s exercises on the web though, so other
people can use them as homework and exam questions as well.

As we finish this book, we are sorely aware of many more exciting results that we had
to leave out. We hope the copious references to other texts will give the reader plenty of
starting points for further explorations. We also plan to periodically update the book’s
website with pointers to newer results or expositions that may be of interest to you.

Above all, we hope that this book conveys our excitement about computational com-
plexity and the insights it provides in a host of other disciplines.

Onward to P versus NP!
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Introduction

“As long as a branch of science offers an abundance of problems, so long it is
alive; a lack of problems foreshadows extinction or the cessation of independent
development.”

David Hilbert, 1900

“The subject of my talk is perhaps most directly indicated by simply asking
two questions: first, is it harder to multiply than to add? and second, why?...1
(would like to) show that there is no algorithm for multiplication computation-
ally as simple as that for addition, and this proves something of a stumbling
block.”

Alan Cobham, 1964

The notion of computation has existed in some form for thousands of years, in contexts
as varied as routine account-keeping and astronomy. Here are three examples of tasks that
we may wish to solve using computation:

e Given two integer numbers, compute their product.
e Given a set of n linear equations over n variables, find a solution if it exists.

e Given a list of acquaintances and a list of all pairs among them who do not get along,
find the largest set of acquaintances you can invite to a dinner party such that every
two invitees get along with one another.

Throughout history people had a notion of a process of producing an output from a set
of inputs in a finite number of steps, and thought of “computation” as “a person writing
numbers on a scratch pad following certain rules.”

One of the important scientific advances in the first half of the 20th century was that
the notion of “computation” received a much more precise definition. From this definition
it quickly became clear that computation can happen in diverse physical and mathematical
systems —Turing machines, lambda calculus, cellular automata, pointer machines, bouncing
billiards balls, Conway’s Game of life, etc.. Surprisingly, all these forms of computation are
equivalent —in the sense that each model is capable of implementing all computations that
we can conceive of on any other model (see Chapter 1). This realization quickly led to the
invention of the standard universal electronic computer, a piece of hardware that is capable of
executing all possible programs. The computer’s rapid adoption in society in the subsequent
decades brought computation into every aspect of modern life, and made computational
issues important in design, planning, engineering, scientific discovery, and many other human
endeavors. Computer algorithms, which are methods of solving computational problems,
became ubiquitous.

But computation is not “‘merely” a practical tool. It is also a major scientific concept.
Generalizing from physical models such as cellular automata, scientists now view many nat-
ural phenomena as akin to computational processes. The understanding of reproduction in
living things was triggered by the discovery of self-reproduction in computational machines.
(In fact, a book by the physicist Schrodinger [Sch44] predicted the existence of a DNA-like
substance in cells before Watson and Crick discovered it, and was credited by Crick as an
inspiration for that research.) Today, computational models underlie many research areas
in biology and neuroscience. Several physics theories such as QED give a description of
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nature that is very reminiscent of computation, motivating some scientists to even suggest
that the entire universe may be viewed as a giant computer (see Lloyd [Llo06]). In an inter-
esting twist, such physical theories have been used in the past decade to design a model for
quantum computation; see Chapter 10.

Computability versus complexity. After their success in defining computation, researchers
focused on understanding what problems are computable. They showed that several inter-
esting tasks are inherently uncomputable: no computer can solve them without going into
infinite loops (i.e., never halting) on certain inputs. Though a beautiful topic, computability
will not be our focus in this book. We discuss it briefly in Chapter 1 and refer the reader to
standard texts [Sip96, HMUO1, Koz97, Rog87] for more details. Instead, we focus on computa-
tional complexity theory, which focuses on issues of computational efficiency —quantifying
the amount of computational resources required to solve a given task. Below, we describe
at an informal level how one can quantify “efficiency,” and after that discuss some of the
issues that arise in connection with its study.

Quantifying computational efficiency

To explain what we mean by computational efficiency, we use the three examples of com-
putational tasks we mentioned above. We start with the task of multiplying two integers.
Consider two different methods (or algorithms) to perform this task. The first is repeated
addition: to compute a - b, just add a to itself b — 1 times. The other is the grade-school al-
gorithm illustrated in Figure 1. Though the repeated addition algorithm is perhaps simpler
than the grade-school algorithm, we somehow feel that the latter is better. Indeed, it is much
more efficient. For example, multiplying 577 by 423 using repeated addition requires 422
additions, whereas doing it with the grade-school algorithm 3 multiplications of a number
by a single digit and 3 additions.

5 77
4 2 3
1 7 3 1
1 1 5 4
2 3 0 8
2 4 4 0 7 1

Figure 1 Grade-school algorithm for multiplication. Illustrated for computing 577 - 423.

We will quantify the efficiency of an algorithm by studying how its number of basic
operations scales as we increase the size of the input. For this discussion, let the basic
operations be addition and multiplication of single digits. (In other settings, we may wish
to throw in division as a basic operation.) The size of the input is the number of digits
in the numbers. The number of basic operations used to multiply two n-digit numbers
(i.e., numbers between 10! and 10") is at most 2n? for the grade-school algorithm and
at least n10"~! for repeated addition. Phrased this way, the huge difference between the
two algorithms is apparent: even for 11-digit numbers, a pocket calculator running the
grade-school algorithm would beat the best current supercomputer running the repeated
addition algorithm. For slightly larger numbers even a fifth grader with pen and paper
would outperform a supercomputer. We see that the efficiency of an algorithm is to a
considerable extent much more important than the technology used to execute it.

Surprisingly enough, there is an even faster algorithm for multiplication that uses the
Fast Fourier Transform. It was only discovered some 40 years ago and multiplies two n-digit
numbers using cnlognloglogn operations where ¢ is some absolute constant independent
of n; see Chapter 16. We call such an algorithm an O(nlognloglogn)-step algorithm: see
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our notational conventions below. As n grows, this number of operations is significantly
smaller than n?2.

For the task of solving linear equations, the classic Gaussian elimination algorithm
(named after Gauss but already known in some form to Chinese mathematicians of the
first century) uses O(n?) basic arithmetic operations to solve n equations over n variables.
In the late 1960’s, Strassen found a more efficient algorithm that uses roughly O(n?3!)
operations, and the best current algorithm takes O(n?-37%) operations (see Chapter 16).

The dinner party task also has an interesting story. As in the case of multiplication,
there is an obvious and simple inefficient algorithm: try all possible subsets of the n people
from the largest to the smallest, and stop when you find a subset that does not include any
pair of guests who don’t get along. This algorithm can take as much time as the number of
subsets of a group of n people, which is 2. This is highly unpractical —an organizer of, say,
a 70-person party, would need to plan it at least a thousand years in advance, even if she has
a supercomputer at her disposal. Surprisingly, we still do not know of a significantly better
algorithm for this task. In fact, as we will see in Chapter 2, we have reasons to suspect that
no efficient algorithm ezists, since this task turns out to be equivalent to the independent
set computational problem, which, together with thousands of other important problems,
is NP-complete. The famous “P versus NP” question (Chapter 2) asks whether or not any
of these problems has an efficient algorithm.

Proving nonexistence of efficient algorithms

We have seen that sometimes computational tasks turn out to have nonintuitive algorithms
that are more efficient than algorithms used for thousands of years. It would therefore be
really interesting to prove for some computational tasks that the current algorithm is the
best —in other words, no better algorithms exist. For instance, we could try to prove that
the O(nlognloglogn)-step algorithm for multiplication cannot be improved upon (thus
implying that multiplication is inherently more difficult than addition, which does have an
O(n)-step algorithm). Or, we could try to prove that there is no algorithm for the dinner
party task that takes fewer than 2/10 steps. Trying to prove such results is a central goal
of complexity theory.

How can we ever prove such a nonexistence result? There are infinitely many possible
algorithms! So we have to mathematically prove that each one of them is less efficient that
the known algorithm. This may be possible to do, because computation is a mathematically
precise notion. In fact, this kind of result (if proved) would fit into a long tradition of
impossibility results in mathematics, such as the independence of Euclid’s parallel postulate
from the other basic axioms of geometry, or the impossibility of trisecting an arbitrary angle
using a compass and straightedge. Such results count among the most interesting, fruitful,
and surprising results in mathematics.

In complexity theory, we are still only rarely able to prove such nonexistence of algo-
rithms. We do have important nonexistence results in some concrete computational mod-
els that are not as powerful as general computers, which are described in Part II of the
book. Since we are still missing good results for general computers, one important source
of progress in complexity theory is our stunning success in interrelating different complexity
questions, and the rest of the book is filled with examples of these.

Some interesting questions about computational efficiency

Now we give an overview of some important issues regarding computational complexity, all
of which will be treated in greater detail in later chapters. An overview of mathematical
background is given in Appendix A.



4 Contents

1. Computational tasks in a variety of disciplines such as the life sciences, social sciences
and operations research involve searching for a solution across a vast space of possibil-
ities (for example, the aforementioned tasks of solving linear equations and finding a
maximal set of invitees to a dinner party). This is sometimes called exhaustive search,
since the search exhausts all possibilities. Can this exhaustive search be replaced by a
more efficient search algorithm?

As we will see in Chapter 2, this is essentially the famous “P vs. NP” question,
considered the central problem of complexity theory. Many interesting search problems
are NP-complete, which means that if the famous conjecture P # NP is true, then
these problems do not have efficient algorithms; they are inherently intractable.

2. Can algorithms use randomness (i.e., coin tossing) to speed up computation?

Chapter 7 introduces randomized computation and describes efficient probabilistic al-
gorithms for certain tasks. But Chapters 19 and 20 show a surprising recent result
giving strong evidence that randomness does not help speed up computation too much,
in the sense that any probabilistic algorithm can be replaced with a deterministic al-
gorithm (tossing no coins) that is almost as efficient.

3. Can hard problems become easier to solve if we allow the algorithms to err on a small
number of inputs, or to only compute an approzimate solution?

Average-case complezity and approximation algorithms are studied in Chapters 11, 18,
19, and 22. These chapters also show fascinating connections between these questions,
the power of randomness, different notions of mathematical proofs, and the theory of
error correcting codes.

4. Can we derive any practical benefit from computationally hard problems? For exam-
ple, can we use them to construct cryptographic protocols that are unbreakable (at
least by any plausible adversary)?

As described in Chapter 9, the security of digital cryptography is intimately related to
the P vs. NP question (see Chapter 2) and average-case complexity (see Chapters 18).

5. Can we use the counterintuitive quantum mechanical properties of matter to build
faster computers?

Chapter 10 describes the fascinating notion of quantum computers that use quantum
mechanics to speed up certain computations. Peter Shor has shown that, if ever built,
quantum computers will be able to factor integers efficiently (thus breaking many
current cryptosystems). However, currently there are many daunting obstacles to
actually building such computers,

6. Do we need people to prove mathematical theorems, or can we generate mathematical
proofs automatically? Can we check a mathematical proof without reading it com-
pletely? Do interactive proofs, involving a dialog between prover and verifier, have
more power than standard “static” mathematical proofs?

The notion of proof, central to mathematics, turns out to be central to computational
complexity as well, and complexity has shed new light on the meaning of mathemat-
ical proofs. Whether mathematical proofs can be generated automatically turns out
to depend on the P vs. NP question (see Chapter 2). Chapter 11 describes proba-
bilistically checkable proofs. These are surprisingly robust mathematical proofs that
can checked by only reading them in very few probabilistically chosen locations, in
contrast to the traditional proofs that require line-by-line verification. Along similar
lines we introduce the notion of interactive proofs in Chapter 8 and use them to derive
some surprising results. Finally, proof complezity, a subfield of complexity studying
the minimal proof length of various statements, is studied in Chapter 15.

At roughly 40 years of age, Complexity theory is still an infant science and many im-
portant results are less than 20 years old. We have few complete answers for any of these
questions. In a surprising twist, computational complexity has also been used to prove some
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metatmathematical theorems: they provide evidence of the difficulty of resolving some of
the questions of ... computational complexity; see Chapter 23.

We conclude with another quote from Hilbert’s 1900 lecture:

Proofs of impossibility were effected by the ancients ... [and] in later mathemat-
ics, the question as to the impossibility of certain solutions plays a preminent
part. ...

In other sciences also one meets old problems which have been settled in a manner
most satisfactory and most useful to science by the proof of their impossibility.
... After seeking in vain for the construction of a perpetual motion machine, the
relations were investigated which must subsist between the forces of nature if such
a machine is to be impossible; and this inverted question led to the discovery of
the law of the conservation of energy. ...

It is probably this important fact along with other philosophical reasons that gives
rise to conviction ... that every definite mathematical problem must necessarily
be susceptible to an exact settlement, either in the form of an actual answer to the
question asked, or by the proof of the impossibility of its solution and therewith
the necessary failure of all attempts. ... This conviction... is a powerful incentive
to the worker. We hear within us the perpetual call: There is the problem. Seek
its solution. You can find it by pure reason, for in mathematics there is no
ignorance.
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