
DRAFT

i

Computational Complexity: A Modern
Approach

Draft of a book: Dated January 2007
Comments welcome!

Sanjeev Arora and Boaz Barak
Princeton University

complexitybook@gmail.com

Not to be reproduced or distributed without the authors’ permission

This is an Internet draft. Some chapters are more finished than others. References and
attributions are very preliminary and we apologize in advance for any omissions (but hope you

will nevertheless point them out to us).

Please send us bugs, typos, missing references or general comments to
complexitybook@gmail.com — Thank You!!

DRAFT

ii

DRAFT

Chapter 19

More PCP Theorems and the Fourier
Transform Technique

The PCP Theorem has several direct applications in complexity theory, in particular showing
that unless P = NP, many NP optimization problems can not be approximated in polynomial-
time to within arbitrary precision. However, for some applications, the standard PCP Theorem
does not suffice, and we need stronger (or simply different) “PCP Theorems”. In this chapter we
survey some of these results and their proofs. The Fourier transform technique turned out to be
especially useful in advanced PCP constructions, and in other areas in theoretical computer science.
We describe the technique and show two of its applications. First, we use Fourier transforms to
prove the correctness of the linearity testing algorithm of Section 18.4, completing the proof of the
PCP Theorem. We then use it to prove a stronger PCP Theorem due to H̊astad, showing tight
inapproximability results for many important problems, including MAX3SAT.

19.1 Parallel Repetition of PCP’s

Recall that the soundness parameter of a PCP system is the probability that the verifier may
accept a false statement. Definition 18.1 specified the soundness parameter to be 1/2, but as we
noted, it can be reduced to an arbitrary small constant by increasing the number of queries. Yet
for some applications we need a system with, say, three queries, but an arbitrarily small constant
soundness parameter. Raz has shown that this can be achieved if we consider systems with non
binary alphabet. (For a finite set S, we say that a PCP verifier uses alphabet S if it takes as input
a proof string π in S∗.) The idea is simple and natural: use parallel repetition. That is, we take a
PCP verifier V and run ` independent copies of it, to obtain a new verifier V ` such that a query
of V ` is the concatenation of the ` queries of V , and an answer is a concatenation of the ` answers.
(So, if the original verifier V used proofs over, say, the binary alphabet, then the verifier V ` will
use the alphabet {0, 1}`.) The verifier V ` accepts the proof only of all the ` executions of V accept.
Formally, we define parallel repetition as follows:

Definition 19.1 (Parallel repetition)
Let S be a finite set. Let V be a PCP verifier using alphabet S and let ` ∈ N. The `-times parallel

Web draft 2007-01-08 22:04
Complexity Theory: A Modern Approach. © 2006 Sanjeev Arora and Boaz Barak. References and attributions are
still incomplete.

p19.1 (379)

DRAFT

p19.2 (380) 19.1. PARALLEL REPETITION OF PCP’S

Original V Parallel repeated V ` Sequential repeated V seq`

Alphabet size W W ` W

Proof size m m` m

Random coins used r `r `r

Number of queries q q `q

Completeness probability 1 1 1
soundness parameter 1− δ (1− δa)b` (1− δ)`

Table 19.1: Parameters of `-times parallel repeated verifier V ` vs. parameters for sequential repetition.

repeated V is the verifier V ` that operates as follows:

1. V ` uses the alphabet Ŝ = S`. We denote the input proof string to V ` by π̂.

2. Let q denote the number of queries V makes. On any input x, V ` chooses ` independent
random tapes r1, . . . , r` for V , and runs V on the input and these tapes to obtain ` sets of q
queries

i11, i12, . . . , i1q

i21, i22, . . . , i2q

. . .

i`1, i`2, . . . , i`q

3. V ` makes q queries i1, . . . , iq to π̂ where ij is 〈i1j , . . . , i`j〉 (under a suitable encoding of N` into
N).

4. For j ∈ [q], denote 〈a1
j , . . . , a

`
j〉 = π̂(ij). The verifier V ` accepts if and only for every k ∈ [`],

the verifier V on random tape rk accepts when given the responses ak
1, . . . , a

k
q .

Remark 19.2
For every input x, if there is a proof π such that on input x, the verifier V accepts π with probability
one, then there is a proof π̂ such that on input x, the verifier V ` accepts π̂ with probability one.
Namely, for every `-tuple of positions i1, . . . , i`, the proof π̂ contains the tuple 〈π[i1], . . . , π[i`]〉.
Note that |π̂| = |π|`.

Why is it called “parallel repetition”? We call the verifier V ` the parallel repeated version
of V to contrast with sequential repetition. If V is a PCP verifier and ` ∈ N, we say that `-times
sequentially repeated V , denoted V seq`, is the verifier that chooses ` random tapes for V , then
makes the q` queries corresponding to these tapes one after the other, and accepts only if all the
instances accept. Note that V seq` uses the same alphabet as V , and uses proofs of the same size.
The relation between the parameters of V , V ` and V seq` is described in Table 19.1.

Web draft 2007-01-08 22:04

DRAFT

19.2. HÅSTAD’S 3-BIT PCP THEOREM p19.3 (381)

It is a simple exercise to show that if V ’s soundness parameter was 1− δ then V seq` soundness
parameter will be equal to (1−δ)`. One may expect the soundness parameter of the parallel repeated
verifier V ` to also be (1−δ)`. It turns out this is not the case (there is a known counterexample [?]),
however the soundness parameter does decay exponentially with the number of repetitions:

Theorem 19.3 (Parallel Repetition Lemma, [?])
There exist constants a, b (independent of ` but depending on the alphabet size used and number

of queries) such that the soundness parameter of V ` is at most (1− δa)b`

We omit the proof of Theorem 19.3 for lack of space. Roughly speaking, the reason analyzing
soundness of V ` is so hard is the following: for every tuple 〈i1, . . . , i`〉, the corresponding position
in the proof for V ` is “supposed” to consist of the values π[i1] ◦ · · ·π[i`] where π is some proof for
V . However, a priori, we do not know if the proof satisfies this property. It may be that the proof
is inconsistent and that two tuples containing the ith position “claim” a different assignment for
π[i].

Remark 19.4
The Gap Amplification Lemma (Lemma 18.29) of the previous chapter has a similar flavor, in the
sense that it also reduced the soundness parameter at the expense of an increase in the alphabet
size. However, that lemma assumed that the soundness parameter is very close to 1, and its proof
does not seem to generalize for soundness parameters smaller than 1/2. We note that a weaker
version of Theorem 19.3, with a somewhat simpler proof, was obtained by Feige and Kilian [?].
This weaker version is sufficient for many applications, including for H̊astad’s 3-query PCP theorem
(see Section 19.2 below).

19.2 H̊astad’s 3-bit PCP Theorem

In most cases, the PCP Theorem does not immediately answer the question of exactly how well can
we approximate a given optimization problem (even assuming P 6= NP). For example, the PCP
Theorem implies that if P 6= NP then MAX3SAT cannot be c-approximated in polynomial-time
for some constant ρ < 1. But if one follows closely the proof of Theorem 18.13, this constant ρ
turns out to be very close to one, and in particular it is larger than 0.999. On the other hand,
as we saw in Example 18.6, there is a known 7/8-approximation algorithm for MAX3SAT. What
is the true “approximation complexity” of this problem? In particular, is there a polynomial-time
0.9-approximation algorithm for it? Similar questions are the motivation behind many stronger
PCP theorems. In particular, the following theorem by H̊astad implies that for every ε > 0 there
is no polynomial-time (7/8+ε)-approximation for MAX3SAT unless P = NP:

Theorem 19.5 (Håstad’s 3-bit PCP [?])
For every ε > 0 and every language L ∈ NP there is a PCP-verifier V for L making three (binary)
queries having completeness probability at least 1− ε and soundness parameter at most 1/2 + ε.

Moreover, the test used by V are linear. That is, given a proof π ∈ {0, 1}m, V chooses a triple
(i1, i2, i3) ∈ [m]3 and b ∈ {0, 1} according to some distribution and accepts iff πi1 + πi2 + πi3 = b
(mod 2).

Web draft 2007-01-08 22:04

DRAFT

p19.4 (382) 19.3. TOOL: THE FOURIER TRANSFORM TECHNIQUE

Theorem 19.5 immediately implies that the problem MAXE3LIN is NP-hard to 1/2+ε-approximate
for every ε > 0, where MAXE3LIN is the problem of finding a solution maximizing the number of
satisfied equations among a given system of linear equations over GF(2), with each equation con-
taining at most 3 variables. Note that this hardness of approximation result is tight since a random
assignment is expected to satisfy half of the equations. Also note that finding out whether there
exists a solution satisfying all of the equations can be done in polynomial-time using Gaussian
elimination (and hence the imperfect completeness in Theorem 19.5 is inherent).

The result for MAX3SAT is obtained by the following corollary:

Corollary 19.6
For every ε > 0, computing (7/8+ε)-approximation to MAX3SAT is NP-hard.

Proof: We reduce MAXE3LIN to MAX3SAT. Take any instance of MAXE3LIN where we are
interested in determining whether (1−ε) fraction of the equations can be satisfied or at most 1/2+ε
are. Represent each linear constraint by four 3CNF clauses in the obvious way. For example, the
linear constraint a+b+c = 0 (mod 2) is equivalent to the clauses (a∨b∨c), (a∨b∨c), (a∨b∨c), (a∨
b ∨ c). If a, b, c satisfy the linear constraint, they satisfy all 4 clauses and otherwise they satisfy at
most 3 clauses. We conclude that in one case at least (1− ε) fraction of clauses are simultaneously
satisfiable, and in the other case at most 1− (1

2 − ε)× 1
4 = 7

8 −
ε
4 fraction are. The ratio between

the two cases tends to 7/8 as ε decreases. Since Theorem 19.5 implies that distinguishing between
the two cases is NP-hard for every constant ε, the result follows. �

19.3 Tool: the Fourier transform technique

The continuous Fourier transform is extremely useful in mathematics and engineering. Likewise,
the discrete Fourier transform has found many uses in algorithms and complexity, in particular for
constructing and analyzing PCP’s. The Fourier transform technique for PCP’s involves calculating
the maximum acceptance probability of the verifier using Fourier analysis of the functions presented
in the proof string. It is delicate enough to give “tight” inapproximability results for MAX INDSET,
MAX3SAT, and many other problems.

To introduce the technique we start with a simple example: analysis of the linearity test over
GF(2) (i.e., proof of Theorem 18.23). We then introduce the Long Code and show how to test for
membership in it. These ideas are then used to prove H̊astad’s 3-bit PCP Theorem.

19.3.1 Fourier transform over GF(2)n

The Fourier transform over GF(2)n is a tool to study functions on the Boolean hypercube. In this
chapter, it will be useful to use the set {+1,−1} = {±1} instead of {0, 1}. To transform {0, 1}
to {±1}, we use the mapping b 7→ (−1)b (i.e., 0 7→ +1 , 1 7→ −1). Thus we write the hypercube
as {±1}n instead of the more usual {0, 1}n. Note this maps the XOR operation (i.e., addition in
GF(2)) into the multiplication operation.

The set of functions from {±1}n to R defines a 2n-dimensional Hilbert space (see Section ??)
as follows. Addition and multiplication by a scalar are defined in the natural way: (f + g)(x) =

Web draft 2007-01-08 22:04

DRAFT

19.3. TOOL: THE FOURIER TRANSFORM TECHNIQUE p19.5 (383)

f(x) + g(x) and (αf)(x) = αf(x) for every f, g : {±1}n → R, α ∈ R. We define the inner product
of two functions f, g, denoted 〈f, g〉, to be Ex∈{±1}n [f(x)g(x)].

The standard basis for this space is the set {ex}x∈{±1}n , where ex(y) is equal to 1 if y = x,
and equal to 0 otherwise. This is an orthonormal basis, and every function f : {±1}n → R can be
represented in this basis as f =

∑
x axex. For every x ∈ {±1}n, the coefficient ax is equal to f(x).

The Fourier basis for this space is the set {χα}α⊆[n] where χα(x) =
∏

i∈α xi (χ∅ is the constant
1 function). These correspond to the linear functions over GF(2). To see this, note that every
linear function of the form b 7→ a�b (with a,b ∈ {0, 1}n) is mapped by our transformation to the
function taking x ∈ {±1}n to

∏
i s.t. ai=1 xi.

The Fourier basis is indeed an orthonormal basis for the Hilbert space. Indeed, the random
subsum principle implies that for every α, β ⊆ [n], 〈χα, χβ〉 = δα,β where δα,β is equal to 1 iff α = β
and equal to 0 otherwise. This means that every function f : {±1}n → R can be represented as
f =

∑
α⊆[n] f̂αχα. We call f̂α the αth Fourier coefficient of f .

We will often use the following simple lemma:

Lemma 19.7
Every two functions f, g :{±1}n → R satisfy

1. 〈f, g〉 =
∑

α f̂αĝα.

2. (Parseval’s Identity) 〈f, f〉 =
∑

α f̂2
α

Proof: The second property follows from the first. To prove the first we expand

〈f, g〉 = 〈
∑
α

f̂αχα,
∑
β

ĝβχβ〉 =

∑
α,β

f̂αĝβ〈χα, χβ〉 =
∑
α,β

f̂αĝβδα,β =
∑
α

f̂αĝα

�

Example 19.8
Some examples for the Fourier transform of particular functions:

1. If f(u1, u2, . . . , un) = ui (i.e., f is a coordinate function, a concept we will see again soon)
then f = χ{i} and so f̂{i} = 1 and f̂α = 0 for α 6= {i}.

2. If f is a random boolean function on n bits, then each f̂α is a random variable that is a sum of
2n binomial variables (equally likely to be 1,−1) and hence looks like a normally distributed
variable with standard deviation 2n/2 and mean 0. Thus with high probability, all 2n Fourier
coefficients have values in [−poly(n)

2n/2 ,
poly(n)

2n/2].

Web draft 2007-01-08 22:04

DRAFT

p19.6 (384) 19.3. TOOL: THE FOURIER TRANSFORM TECHNIQUE

The connection to PCPs: High level view

In the PCP context we are interested in Boolean-valued functions, i.e., those from GF (2)n to GF (2).
Under our transformation these are mapped to functions from {±1}n to {±1}. Thus, we say that
: f {±1}n → R is Boolean if f(x) ∈ {±1} for every x ∈ {±1}n. Note that if f is Boolean then
〈f, f〉 = Ex[f(x)2] = 1.

On a high level, we use the Fourier transform in the soundness proofs for PCP’s to show that
if the verifier accepts a proof π with high probability then π is “close to” being “well-formed”
(where the precise meaning of “close-to” and “well-formed” is context dependent). Technically,
we will often be able to relate the acceptance probability of the verifier to an expectation of the
form 〈f, g〉 = Ex[f(x)g(x)], where f and g are Boolean functions arising from the proof. We then
use techniques similar to those used to prove Lemma 19.7 to relate this acceptance probability
to the Fourier coefficients of f, g, allowing us to argue that if the verifier’s test accepts with high
probability, then f and g have few relatively large Fourier coefficients. This will provide us with
some nontrivial useful information about f and g, since in a “generic” or random function, all the
Fourier coefficient are small and roughly equal.

19.3.2 Analysis of the linearity test over GF (2)

We will now prove Theorem 18.23, thus completing the proof of the PCP Theorem. Recall that
the linearity test is provided a function f : GF(2)n → GF(2) and has to determine whether f
has significant agreement with a linear function. To do this it picks x,y ∈ GF(2)n randomly and
accepts iff f(x + y) = f(x) + f(y).

Now we rephrase this test using {±1} instead of GF(2), so linear functions turn into Fourier basis
functions. For every two vectors x,y ∈ {±1}n, we denote by xy their componentwise multiplication.
That is, xy = (x1y1, . . . , xnyn). Note that for every basis function χα(xy) = χα(x)χα(y).

For two Boolean functions f, g, 〈f, g〉 is equal to the fraction of inputs on which they agree
minus the fraction of inputs on which they disagree. It follows that for every ε ∈ [0, 1] and functions
f, g : {±1}n → {±1}, f has agreement 1

2 + ε
2 with g iff 〈f, g〉 = ε. Thus, if f has a large Fourier

coefficient then it has significant agreement with some Fourier basis function, or in the GF(2)
worldview, f is close to some linear function. This means that Theorem 18.23 can be rephrased as
follows:

Theorem 19.9
Suppose that f : {±1}n → {±1} satisfies Prx,y[f(xy) = f(x)f(y)] ≥ 1

2 + ε. Then, there is some

α ⊆ [n] such f̂α ≥ 2ε.

Proof: We can rephrase the hypothesis as Ex,y[f(xy)f(x)f(y)] ≥ (1
2 + ε)− (1

2 − ε) = 2ε. We note
that from now on we do not need f to be Boolean, but merely to satisfy 〈f, f〉 = 1.

Expressing f by its Fourier expansion,

2ε ≤ Ex,y[f(xy)f(x)f(y)] = Ex,y[(
∑
α

f̂αχα(xy))(
∑
β

f̂βχβ(x))(
∑

γ

f̂γχγ(y))].

Web draft 2007-01-08 22:04

DRAFT

19.3. TOOL: THE FOURIER TRANSFORM TECHNIQUE p19.7 (385)

Since χα(xy) = χα(x)χα(y) this becomes

= Ex,y[
∑
α,β,γ

f̂αf̂β f̂γχα(x)χα(y)χβ(x)χγ(y)].

Using linearity of expectation:

=
∑
α,β,γ

f̂αf̂β f̂γEx,y[χα(x)χα(y)χβ(x)χγ(y)]

=
∑
α,β,γ

f̂αf̂β f̂γEx [χα(x)χβ(x)]Ey [χα(y)χγ(y)]

(because x,y are independent).

By orthonormality Ex[χα(x)χβ(x)] = δα,β, so we simplify to

=
∑
α

f̂3
α

≤ (max
α

f̂α)× (
∑
α

f̂2
α)

Since
∑

α f̂2
α = 〈f, f〉 = 1, this expression is at most maxα

{
f̂α

}
. Hence maxα f̂α ≥ 2ε and the

theorem is proved. �

19.3.3 Coordinate functions, Long code and its testing

Let W ∈ N. We say that f : {±1}W → {±1} is a coordinate function if there is some w ∈ [W],
such that f(x1, x2, . . . , xW) = xw; in other words, f = χ{w}.

Definition 19.10 (Long Code)
The long code for [W] encodes each w ∈ [W] by the table of all values of the function χ{w} :
{±1}[W] → {±1}.

Remark 19.11
Note that w, normally written using log W bits, is being represented using a table of 2W bits, a
doubly exponential blowup! This inefficiency is the reason for calling the code “long.”

Similar to the test for the Walsh-Hadamard code, when testing the long code, we are given a
function f :{±1}W → {±1}, and want to find out if f has good agreement with χ{w} for some w,
namely, f̂{w} is significant. Such a test is described in Exercise 16 of the previous chapter, but it
is not sufficient for the proof of H̊astad’s Theorem, which requires a test using only three queries.
Below we show such a three query test albeit at the expense of achieving the following weaker
guarantee: if the test passes with high probability then f has a good agreement with a function

Web draft 2007-01-08 22:04

DRAFT

p19.8 (386) 19.3. TOOL: THE FOURIER TRANSFORM TECHNIQUE

χα with |α| small (but not necessarily equal to 1). This weaker conclusion will be sufficient in the
proof of Theorem 19.5.

Let ρ > 0 be some arbitrarily small constant. The test picks two uniformly random vectors
x,y ∈ {±1}W and then a vector z ∈ {±1}[W] according to the following distribution: for every
coordinate i ∈ [W], with probability 1 − ρ we choose zi = +1 and with probability ρ we choose
zi = −1. Thus with high probability, about ρ fraction of coordinates in z are −1 and the other
1− ρ fraction are +1. We think of z as a “noise” vector. The test accepts iff f(x)f(y) = f(xyz).
Note that the test is similar to the linearity test except for the use of the noise vector z.

Suppose f = χ{w}. Then

f(x)f(y)f(xyz) = xwyw(xwywzw) = 1 · zw

Hence the test accepts iff zw = 1 which happens with probability 1 − ρ. We now prove a certain
converse:
Lemma 19.12
If the test accepts with probability 1/2 + ε then

∑
α f̂3

α(1− 2ρ)|α| ≥ 2ε.

Proof: If the test accepts with probability 1/2 + ε then E[f(x)f(y)f(xyz)] = 2ε. Replacing f by
its Fourier expansion, we have

2ε ≤ Ex,y,z

(
∑
α

f̂αχα(x)) · (
∑
β

f̂βχβ(y)) · (
∑

γ

f̂γχγ(xyz))


= Ex,y,z

∑
α,β,γ

f̂αf̂β f̂γχα(x)χβ(y)χγ(x)χγ(y)χγ(z)


=
∑
α,β,γ

f̂αf̂β f̂γEx,y,z [χα(x)χβ(y)χγ(x)χγ(y)χγ(z)] .

Orthonormality implies the expectation is 0 unless α = β = γ, so this is

=
∑
α

f̂3
αEz[χα(z)]

Now Ez[χα(z)] = Ez

[∏
w∈α zw

]
which is equal to

∏
w∈α E[zw] = (1 − 2ρ)|α| because each coor-

dinate of z is chosen independently. Hence we get that

2ε ≤
∑
α

f̂3
α(1− 2ρ)|α|

�

The conclusion of Lemma 19.12 is reminiscent of the calculation in the proof of Theorem 19.9,
except for the extra factor (1 − 2ρ)|α|. This factor depresses the contribution of f̂α for large α,
allowing us to conclude that the small α’s must contribute a lot. This formalized in the following
corollary (left as Exercise 2).

Web draft 2007-01-08 22:04

DRAFT

19.4. PROOF OF THEOREM ?? p19.9 (387)

Corollary 19.13
If f passes the long code test with probability 1/2 + δ then∑

α:|α|≤k

f̂3
α ≥ 2δ − ε,

where k = 1
2ρ log 1

ε .

19.4 Proof of Theorem 19.5

Recall that our proof of the PCP Theorem implies that there are constants γ > 0, s ∈ N such that
(1−γ)-GAP 2CSPs is NP-hard (see Claim 18.36). This means that for every NP-language L we have
a PCP-verifier for L making two queries over alphabet {0, . . . , s−1} with perfect completeness and
soundness parameter 1−γ. Furthermore this PCP system has the property that the verifier accepts
the answer pair z1, z2 iff z2 = hr(z1) where hr is a function (depending on the verifier’s randomness
r) mapping {0, . . . , s − 1} to itself (see Exercise 3). We call this the projection property. Using
the Raz’s parallel repetition lemma (Theorem 19.3), we can reduce the soundness parameter to an
arbitrary small constant at the expense of increasing the alphabet. Note that parallel repetition
preserves the projection property.

Let L be an NP-language and ε > 0 an arbitrarily small constant. By the above there exists a
constant W and PCP-verifier VRaz (having the projection property) that makes two queries to a
polynomial-sized PCP proof π with alphabet {1, . . . ,W} such that for every x, if x ∈ L then there
exists π such that Pr[V π

Raz(x) = 1] = 1 and if x 6∈ L then Pr[V π
Raz(x) = 1] < ε for every π.

Now we describe H̊astad’s verifier VH . It essentially follows VRaz, but it expects each entry in
the PCP proof π to be encoded using the long code. It expects these encodings to be bifolded,
a technical property we now define and is motivated by the observation that coordinate functions
satisfy χ{w}(−u) = −χ{w}(u), where −u is the vector (−u1, . . . ,−uW).

Definition 19.14
A function f : {±1}W → {±1} is bifolded if for all u ∈ {±1}W , f(−u) = −f(u).

Whenever the PCP proof is supposed to contain a longcode codeword then we may assume
without loss of generality that the function is bifolded. The reason is that the verifier can identify,
for each pair of inputs u,−u, one designated representative —say the one whose first coordinate is
+1— and just define f(−u) to be −f(u). One benefit —though of no consequence in the proof—
of this convention is that bifolded functions require only half as many bits to represent. We will
use the following fact:

Lemma 19.15
If f : {±1}W → {±1} is bifolded and f̂α 6= 0 then |α| must be an odd number (and in particular,
nonzero).

Proof: By definition,
f̂α = 〈f, χα〉 = 1

2n

∑
u

f(u)
∏
i∈α

ui.

Web draft 2007-01-08 22:04

DRAFT

p19.10 (388) 19.4. PROOF OF THEOREM ??

If |α| is even then
∏

i∈α ui =
∏

i∈α(−ui). So if f is bifolded, the terms corresponding to u and −u
have opposite signs and the entire sum is 0. �

H̊astad’s verifier. Recall that VRaz uses its randomness to select a function two entries i, j in
the table π and a function h : [W] → [W], and accepts iff π(j) = h(π(i)). H̊astad’s verifier,
denoted VH , expects the proof π̃ to consist of (bifolded) longcode encodings of each entry of π. The
verifier VH emulates VRaz to pick two locations i,j in the table and a function h : [W] → [W] such
that VRaz’s test is to accept iff π[j] = h(π[i]). The proof π̃ contains in the locations i and j two
functions f and g respectively (which may or may not be the longcode encoding of π(i) and π(j)).
Instead of reading the long codes f, g in their entirety, the verifier VH performs a simple test that
is reminiscent of the long code test. For a string y ∈ {±1}W we denote by h−1(y) the string such
that for every w ∈ [W], h−1(y)w = yh(w). In other words, for each u ∈ [W], the bit yu appears in
all coordinates of h−1(y) that are indexed by integers in the subset h−1(u). This is well defined
because

{
h−1(u) : u ∈ [W]

}
is a partition of [W]. VH chooses uniformly at random u,y ∈ {±1}W

and chooses z ∈ {±1}W by letting zi = +1 with probability 1− ρ and zi = −1 with probability ρ.
It then accepts Iff

f(u)g(y) = f(h−1(y)uz) (1)

Translating back from {±1} to {0, 1}, note that VH ’s test is indeed linear, as it accepts iff
π̃[i1] + π̃[i2] + π̃[i3] = b for some i1, i2, i3 ∈ [m2W] and b ∈ {0, 1}. (The bit b can indeed equal 1
because of the way VH ensures the bifolding property.)

Completeness of VH . Suppose f, g are long codes of two integers w, u satisfying h(w) = u (in
other words, Vraz would have accepted the assignments represented by these integers). Then

f(u)g(y)f(h−1(y)uz) = uwyu(h−1(y)uzw

= uwyu(yh(w)uwzw) = zw.

Hence VH accepts iff zw = 1, which happens with probability 1− ρ.

Soundness of VH . We now show that if VH accepts f, g with probability significantly more than
1/2, then the Fourier transforms of f, g must be correlated. To formalize this we define for α ⊆ [W],

h2(α) =
{
u ∈ [W] :

∣∣h−1(u) ∩ α
∣∣ is odd

}
Notice in particular that for every u ∈ h2(α) there is at least one w ∈ α such that h(w) = u.

In the next Lemma δ is allowed to be negative.

Lemma 19.16
Let f, g : {±1}W → {±1}, h : [W] → [W] be bifolded functions passing VH ’s test (1) with
probability at least 1/2 + δ. Then ∑

α⊆[W],α 6=∅

f̂2
αĝh2(α)(1− 2ρ)|α| ≥ 2δ

Web draft 2007-01-08 22:04

DRAFT

19.4. PROOF OF THEOREM ?? p19.11 (389)

Proof: By hypothesis, f, g are such that E[f(u)f(uh−1(y)z)g(y)] ≥ 2δ. Replace f, g by their
Fourier expansions. We get that

2δ ≤ = Eu,y,z

(
∑
α

f̂αχα(x))(
∑
β

ĝβχβ(y))(
∑

γ

f̂γχγ(uh−1(y)z))


=
∑
α,β,γ

f̂αĝβ f̂γEu,y,z

[
χα(u)χβ(y)χγ(u)χγ(h−1(y))χγ(z)

]
By orthonormality this simplifies to

=
∑
α,β

f̂2
αĝβEy,z

[
χβ(y)χα(h−1(y))χα(z)

]
=
∑
α,β

f̂2
αĝβ(1− 2ρ)|α|Ey

[
χα(h−1(y)χβ(y)

]
(2)

since χα(z) = (1− 2ρ)|α|, as noted in our analysis of the long code test. Now we have

Ey[χα(h−1(y))χβ(y)] = Ey[
∏
w∈α

h−1(y)w

∏
u∈β

yu]

= Ey[
∏
w∈α

yh(w)

∏
u∈β

yu],

which is 1 if h2(α) = β and 0 otherwise. Hence (2) simplifies to∑
α

f̂2
αĝh2(α)(1− 2ρ)|α|.

Finally we note that since the functions are assumed to be bifolded, the Fourier coefficients f̂∅ and
ĝ∅ are zero. Thus those terms can be dropped from the summation and the Lemma is proved. �

The following corollary of Lemma 19.16 completes the proof of H̊astad’s 3-bit PCP Theorem.

Corollary 19.17
Let ε be the soundness parameter of VRaz. If ρ, δ satisfy ρδ2 > ε then the soundness parameter of
VH is at most 1/2 + δ.

Proof: Suppose VH accepts a proof π̃ with probability at least 1/2 + δ. We give a probabilistic
construction of a proof π causing VRaz to accept the same statement with probability at least ρδ2.

Suppose that VRaz uses proofs π with m entries in [W]. We can think of π̃ as providing, for
every i ∈ [m], a function fi : {±1}W {±1}. We will use π̃ to construct a proof π for VRaz as follows:
we first use fi to come up with a distribution Di over [W]. We then let π[i] be a random element
from Di.

Web draft 2007-01-08 22:04

DRAFT

p19.12 (390) 19.4. PROOF OF THEOREM ??

The distribution Di. Let f = fi. The distribution Di is defined by first selecting α ⊆ [W] with
probability f̂2

α and then selecting w at random from α. This is well defined because
∑

α f̂2
α = 1 and

(due to bifolding) f∅ = 0.
Recall that VRaz picks using its random tape a pair i, j of locations and a function h : [W] → [W]

and then verifies that π[j] = h(π[i]). Let r be some possible random tape of VRaz and let i, j, h be
the pair of entries in π and function that are determined by r. We define the indicator random
variable Ir to be 1 if for w ∈R Di and u ∈R Dj it holds that w = h(u) and to be 0 otherwise. Thus,
our goal is to show that

Eπ=D1,...,Dm [Er[Ir]] ≥ ρδ2 (3)

since that would imply that there exists a table π causing VRaz to accept with probability at least
ρδ2, proving the corollary.

To prove (3) we first notice that linearity of expectation allows us to exchange the order of the
two expectations and so it is enough to bound Er[EDi,Dj [Ir]] where i, j are the entries determined
by the random tape r. For every r denote by δr the probability that VH accepts π̃ when it uses r
as the random tape for VRaz. The acceptance probability of VH is Er[12 + δr] and hence Er[δr] = δ.

Let i, j, h be the pair and function determined by r and denote by f = fi and g = fj where
fi (resp. fj) is the function at the ith (resp. jth) entry of the table π̃. What is the chance that a
pair of assignments w ∈R Di and v ∈R Dj will satisfy the constraint? (i.e., will satisfy v = h(w)?).
Recall that we pick w and u by choosing α with probability f̂2

α, β with probability ĝ2
β and choosing

w ∈R α, v ∈R β. Now if β = h2(α) then for every v ∈ β there exists w ∈ α with h(w) = v and
hence the probability the constraint is satisfied is at least 1/|α|. Thus, we have that∑

α

1
|α|

f̂2
αĝ2

h2(α) ≤ EDi,Dj [Ir] (4)

This is similar to (but not quite the same as) the expression in Lemma 19.16, according to
which

2δr ≤
∑
α

f̂2
αĝh2(α)(1− 2ρ)|α|.

However, since one can easily see that (1− 2ρ)|α| ≤ 2√
ρ |α|

we have

2δr ≤
∑
α

f̂2
α

∣∣ĝh2(α)

∣∣ 2√
ρ |α|

Or
δr
√

ρ ≤
∑
α

f̂2
α

∣∣ĝh2(α)

∣∣ 1√
|α|

Applying the Cauchy-Schwartz inequality,
∑

i aibi ≤ (
∑

i a
2
i)

1/2(
∑

i b
2
i)

1/2, with f̂α

∣∣ĝπ2(α)

∣∣ 1√
|α|

playing the role of the ai’s and f̂α playing that of the bi’s, we obtain

δr
√

ρ ≤
∑
α

f̂2
α

∣∣ĝh2(α)

∣∣ 1√
|α|

≤

(∑
α

f̂2
α

)1/2(∑
α

f̂α
2
ĝ2
h2(α)

1
|α|

)1/2

(5)

Web draft 2007-01-08 22:04

DRAFT

19.5. LEARNING FOURIER COEFFICIENTS p19.13 (391)

Since
∑

α f̂2
α = 1, by squaring (5) and combining it with (4) we get that for every r,

δ2
rρ ≤ EDi,Dj [Ir]

taking expectation over r and using E[X]2 ≤ E[X2] we get that

δ2ρ = Er[δr]2ρ ≤ Er[δ2
r]ρ ≤ Er[EDi,Dj [Ir]]

proving (3). �

19.5 Learning Fourier Coefficients

Suppose that you are given random access to a Boolean function f : {±1}n → {±1} and want to
find the high Fourier coefficients of f . Of course, we can compute all of the coefficients in time
polynomial in 2n, but is there a faster algorithm? By the Parseval equality (Lemma 19.7) we know
that there can be at most 1/ε2 coefficients with absolute value larger than ε, and so we can hope
to learn these coefficients in time polynomial in n, and 1/ε. It turns out we can (almost) achieve
this goal:

Theorem 19.18 ([?])
There is an algorithm A that given input n ∈ N,ε ∈ (0, 1) and random access to a function
f : {±1}n → {±1}, runs in poly(n, 1/ε) time and with probability at least 0.9 outputs a set L of
size at most O(1/ε2) such that for every α ⊆ [n], if |f̂α| > ε then α ∈ L.

Proof: We identify subsets of [n] with strings in {0, 1}m in the obvious way. For k ≤ n and
α ∈ {0, 1}k denote

f̃α? =
∑

β∈{0,1}n−k

f̂2
α◦β,

where ◦ denotes concatenation. By Parseval (Lemma 19.7) f̃? = 1. Note also that for every k < n
and α ∈ {0, 1}k, f̃α? = f̃α0? + f̃α1?. Therefore, if we think of the full depth-n binary labeled by
binary strings of length ≤ n (with the root being the empty word and the two children of α are α0
and α1), then at any level of this tree there can be at most 1/ε2 strings α such that f̃α? > ε2 (the
kth level of the tree corresponds to all strings of length k). Note that if a string α satisfies f̃α? < ε2

then the same holds for every string of the form α ◦ β. Our goal will be to find all these strings at
all levels, and then output all the strings that label leaves in the tree (i.e., all n-bit strings).

The heart of the algorithm is a procedure Estimate that given α and oracle access to f(·),
outputs an estimate of fα within ε/4 accuracy with probability 1− ε2

100n . Using this procedure we
work our way from the root down, and whenever Estimate(α) gives a value smaller than ε/2 we
“kill” this node and will not deal with it and its subnodes. Note that unless the output of Estimate
is more than ε/4-far from the real value (which we will ensure by the union bound happens with
probability less than 0.1 over all the levels) at most 4/ε nodes will survive at any level. The
algorithm will output the 4/ε leaves that survive.

The procedure Estimate uses the following claim:

Web draft 2007-01-08 22:04

DRAFT

p19.14 (392) 19.6. OTHER PCP THEOREMS: A SURVEY

Claim 19.19
For every α,

f̃α? = Ex,x′∈R{0,1}k,y∈R{0,1}n−k [f(x ◦ y)f(x′ ◦ y)χα(x)χα(x′)]

Proof: We start with the case that α = 0k. To get some intuition, suppose that f̃0k? = 1. This
means that f can be expressed as a sum of functions of the form χ0k◦β and hence it does not depend
on its first k variables. Thus f(x◦y) = f(x′◦y) and we’ll get that E[f(x◦y)f(x′◦y)] = E[f(z)2] = 1.
More generally, if f̃0k? is large then that means that in the Fourier representation, the weight of
functions not depending on the first k variables is large and hence we expect large correlation
between f(x′ ◦ y) and f(x ◦ y). This is verified by the following calculations:

2−n−k
∑

x,x′,y

f(x ◦ y)f(x′ ◦ y) =
basis change

2−n−k
∑

x,x′,y

∑
γ◦β

f̂(γ ◦ β)χγ◦β(x ◦ y)

∑
γ′◦β′

f̂(γ′ ◦ β′)χγ′◦β′(x′ ◦ y)

 =
χγ◦β(x ◦ y) = χγ(x)χβ(y)

2−n−k
∑

x,x′,y

∑
γ◦β

f̂(γ ◦ β)χγ(x)χβ(y)

∑
γ′◦β′

f̂(γ′ ◦ β′)χγ′(x′)χβ′(y)

 =
reordering terms

∑
γ,β,γ′,β′

f̂(γβ)f̂(γ′β′)2−k

(∑
x

χγ′(x)

)
2−k

(∑
x′

χγ(x′)

)
2−(n−k)

(∑
y

χβ(y)χβ′(y)

)
=

Σχγ(x) = 0 for γ 6= 0k∑
β,β′

f̂(0k ◦ β)f̂(0k ◦ β′)δβ,β′ =
∑
β

f̂(0k ◦ β)2 = f̃0k?

For the case α 6= 0k, we essentially add these factors to translate it to the case α = 0k. Indeed
one can verify that if we define g(x◦y) = f(x◦y)χα(x) then for every β ∈ {0, 1}n−k. g0k◦β = fα◦β .
�

By the Chernoff bound, we can estimate the expectation of Claim 19.19 (and hence f̃α?) using
repeated sampling, thus obtaining the procedure Estimate and completing the proof. �

19.6 Other PCP Theorems: A Survey

The following variants of the PCP Theorem have been obtained and used for various applications.

19.6.1 PCP’s with sub-constant soundness parameter.

Because `-times parallel repetition transforms a proof of size m to a proof of size m`, we cannot
use it with ` larger than a constant and still have a polynomial-sized proof. Fortunately, there have
been direct constructions of PCP’s achieving low soundness using larger alphabet size, but without
increasing the proof’s size. Raz and Safra [?] show that there is an absolute constant q such that

Web draft 2007-01-08 22:04

DRAFT

19.6. OTHER PCP THEOREMS: A SURVEY p19.15 (393)

for every W ≤
√

log n, every NP language has a q-query verifier over alphabet {0, . . . ,W − 1} that
uses O(log n) random bits, and has soundness 2−Ω(log W).

19.6.2 Amortized query complexity.

Some applications require binary-alphabet PCP systems enjoying a tight relation between the
number of queries (that can be an arbitrarily large constant) and the soundness parameter. The
relevant parameter here turns out to be the free bit complexity [?, ?]. This parameter is defined as
follows. Suppose the number of queries is q. After the verifier has picked its random string, and
picked a sequence of q addresses, there are 2q possible sequences of bits that could be contained
in those addresses. If the verifier accepts for only t of those sequences, then we say that the
free bit parameter is log t (note that this number need not be an integer). In fact, for most
applications it suffices to consider the amortized free bit complexity [?]. This parameter is defined
as lims→0 fs/ log(1/s), where fs is the number of free bits needed by the verifier to ensure the
soundness parameter is at most s. H̊astad constructed systems with amortized free bit complexity
tending to zero [?]. That is, for every ε > 0, he gave a PCP-verifier for NP that uses O(log n)
random bits and ε amortized free bits. He then used this PCP system to show (using tools
from [?, ?, ?]) that MAX INDSET (and so, equivalently, MAXCLIQUE) is NP-hard to approximate
within a factor of n1−ε for arbitrarily small ε > 0.

19.6.3 Unique games.

Exercises

§1 Prove that there is a polynomial-time algorithm that given a satisfiable 2CSPW instance ϕ
over {0..W−1} where all the constraints are permutations (i.e, ϕi checks that uj′ = h(uj) for
some j, j′ ∈ [n] and permutation h : {0..W−1} → {0..W−1}) finds a satisfying assignment u
for ϕ.

§2 Prove Corollary 19.13.

§3 Prove that the PCP system resulting from the proof of Claim 18.36 (Chapter 18) satisfies
the projection property.

§4 Let f : {±1}n → {±1} and let I ⊆ [n]. Let MI be the following distribution: we choose
z ∈R MI by for i ∈ I, choose zi to be +1 with probability 1/2 and −1 with probability 1/2
(independently of other choices), for i 6∈ I choose zi = +1. We define the variation of f on I
to be Prx∈R{±1}n,z∈RMI

[f(x) 6= f(xz)].

Suppose that the variation of f on I is less than ε. Prove that there exists a function
g : {±1}n → R such that (1) g does not depend on the coordinates in I and (2) g is 10ε-close
to f (i.e., Prx∈R{±1}n [f(x) 6= g(x)] < 10ε). Can you come up with such a g that outputs
values in {±1} only?

§5 For f : {±1}n → {±1} and x ∈ {±1}n we define Nf (x) to be the number of coordinates i
such that if we let y to be x flipped at the ith coordinate (i.e., y = xei where ei has −1 in the

Web draft 2007-01-08 22:04

DRAFT

p19.16 (394) 19.6. OTHER PCP THEOREMS: A SURVEY

ith coordinate and +1 everywhere else) then f(x) 6= f(y). We define the average sensitivity
of f , denoted by as(f) to be the expectation of Nf (x) for x ∈R {±1}n.

(a) Prove that for every balanced function f : {±1}n → {±1} (i.e., Pr[f(x) = +1] = 1/2),
as(f) ≥ 1.

(b) Let f be balanced function from {±1}n to {±1} with as(f) = 1. Prove that f is a
coordinate function or its negation (i.e., f(x) = xi or f(x) = −xi for some i ∈ [n] and
for every x ∈ {±1}n).

Web draft 2007-01-08 22:04

	More PCP Theorems and the Fourier Transform Technique
	Parallel Repetition of PCP's
	Håstad's 3-bit PCP Theorem
	Tool: the Fourier transform technique
	Fourier transform over GF(2)n
	The connection to PCPs: High level view

	Analysis of the linearity test over GF(2)
	Coordinate functions, Long code and its testing

	Proof of Theorem 19.5
	Learning Fourier Coefficients
	Other PCP Theorems: A Survey
	PCP's with sub-constant soundness parameter.
	Amortized query complexity.
	Unique games.

	Exercises

