
DRAFT

i

Computational Complexity: A Modern
Approach

Draft of a book: Dated January 2007
Comments welcome!

Sanjeev Arora and Boaz Barak
Princeton University

complexitybook@gmail.com

Not to be reproduced or distributed without the authors’ permission

This is an Internet draft. Some chapters are more finished than others. References and
attributions are very preliminary and we apologize in advance for any omissions (but hope you

will nevertheless point them out to us).

Please send us bugs, typos, missing references or general comments to
complexitybook@gmail.com — Thank You!!



DRAFT

ii



DRAFT

Chapter 8

Interactive proofs

“What is intuitively required from a theorem-proving procedure? First, that it is
possible to “prove” a true theorem. Second, that it is impossible to “prove” a false
theorem. Third, that communicating the proof should be efficient, in the following
sense. It does not matter how long must the prover compute during the proving
process, but it is essential that the computation required from the verifier is easy.”
Goldwasser, Micali, Rackoff 1985

The standard notion of a mathematical proof follows the certificate definition of NP. That is,
to prove that a statement is true one provides a sequence of symbols that can be written down in a
book or on paper, and a valid sequence exists only for true statements. However, people often use
more general ways to convince one another of the validity of statements: they interact with one
another, with the person verifying the proof (henceforth the verifier) asking the person providing
it (henceforth the prover) for a series of explanations before he is convinced.

It seems natural to try to understand the power of such interactive proofs from the complexity-
theoretic perspective. For example, can one prove that a given formula is not satisfiable? (recall
that is this problem is coNP-complete, it’s not believed to have a polynomial-sized certificate).
The surprising answer is yes. Indeed, interactive proofs turned out to have unexpected powers
and applications. Beyond their philosophical appeal, interactive proofs led to fundamental insights
in cryptographic protocols, the power of approximation algorithms, program checking, and the
hardness of famous “elusive” problems (i.e., NP-problems not known to be in P nor to be NP-
complete) such as graph isomorphism and approximate shortest lattice vector.

8.1 Warmup: Interactive proofs with a deterministic verifier

Let us consider what happens when we introduce interaction into the NP scenario. That is, we’d
have an interrogation-style proof system where rather than the prover send a written proof to the
verifier, the prover and verifier interact with the verifier asking questions and the prover responding,
where at the end the verifier decides whether or not to accept the input. Of course, both verifier
and prover can keep state during the interaction, or equivalently, the message a party sends at any

Web draft 2007-01-08 22:01
Complexity Theory: A Modern Approach. © 2006 Sanjeev Arora and Boaz Barak. References and attributions are
still incomplete.

p8.1 (147)



DRAFT

p8.2 (148) 8.1. WARMUP: INTERACTIVE PROOFS WITH A DETERMINISTIC VERIFIER

point in the interaction can be a function of all messages sent and received so far. Formally, we
make the following definition:

Definition 8.1 (Interaction of deterministic functions)
Let f, g : {0, 1}∗ → {0, 1}∗ be functions. A k-round interaction of f and g on input x ∈ {0, 1}∗,
denoted by 〈f, g〉(x) is the sequence of the following strings a1, . . . , ak ∈ {0, 1}∗ defined as follows:

(1)

a1 = f(x)
a2 = g(x, a1)
. . .

a2i+1 = f(x, a1, . . . , a2i)
a2i+2 = g(x, a1, . . . , a2i+1)

(Where we consider a suitable encoding of i-tuples of strings to strings.)
The output of f (resp. g) at the end of the interaction denoted outf 〈f, g〉(x) (resp. outg〈f, g〉(x)

) is defined to be f(x, a1, . . . , ak) (resp. g(x, a1, . . . , ak)).

Definition 8.2 (Deterministic proof systems)
We say that a language L has a k-round deterministic interactive proof system if there’s a deter-
ministic TM V that on input x, a1, . . . , ai runs in time polynomial in |x|, satisfying:

(Completeness)x ∈ L⇒ ∃P : {0, 1}∗ → {0, 1}∗ outV 〈V, P 〉(x) = 1
(Soundness)x 6∈ L⇒ ∀P : {0, 1}∗ → {0, 1}∗ outV 〈V, P 〉(x) = 1

The class dIP contains all languages with a k(n)-round deterministic interactive proof systems
with k(n) polynomial in n.

It turns out this actually does not change the class of languages we can prove:

Theorem 8.3
dIP = NP.

Proof: Clearly, every NP language has a 1-round proof system. Now we prove that if a L has
an interactive proof system of this type then L ∈ NP. The certificate for membership is just the
transcript (a1, a2, . . . , ak) causing the verifier to accept. To verify this transcript, check that indeed
V (x) = a1, V (x, a1, a2) = a3, . . ., and V (x, a1, . . . , ak) = 1. If x ∈ L then there indeed exists such
a transcript. If there exists such a transcript (a1, . . . , ak) then we can define a prover function P to
satisfy P (x, a1) = a2, P (x, a1, a2, a3) = a4, etc. We see that outV 〈V, P 〉(x) = 1 and hence x ∈ L.
�

Web draft 2007-01-08 22:01



DRAFT

8.2. THE CLASS IP p8.3 (149)

8.2 The class IP

In order to realize the full potential of interaction, we need to let the verifier be probabilistic. The
idea is that, similar to probabilistic algorithms, the verifier will be allowed to come to a wrong
conclusion (e.g., accept a proof for a wrong statement) with some small probability. However, as in
the case of probabilistic algorithms, this probability is over the verifier’s coins and the verifier will
reject proofs for a wrong statement with good probability regardless of the strategy the prover uses.
It turns out that the combination of interaction and randomization has a huge effect: as we will
see, the set of languages which have interactive proof systems now jumps from NP to PSPACE.

Example 8.4
As an example for a probabilistic interactive proof system, consider the following scenario: Marla
claims to Arthur that she can distinguish between the taste of Coke (Coca-Cola) and Pepsi. To
verify this statement, Marla and Arthur repeat the following experiment 50 times: Marla turns her
back to Arthur, as he places Coke in one unmarked cup and Pepsi in another, choosing randomly
whether Coke will be in the cup on the left or on the right. Then Marla tastes both cups and states
which one contained which drinks. While, regardless of her tasting abilities, Marla can answer
correctly with probability 1

2 by a random guess, if she manages to answer correctly for all the 50
repetitions, Arthur can indeed be convinced that she can tell apart Pepsi and Coke.

To formally define this we extend the notion of interaction to probabilistic functions (actually,
we only need to do so for the verifier). To model an interaction between f and g where f is
probabilistic, we add an additionalm-bit input r to the function f in (1), that is having a1 = f(x, r),
a3 = f(x, r, a1, a2), etc. The interaction 〈f, g〉(x) is now a random variable over r ∈R {0, 1}m.
Similarly the output outf 〈f, g〉(x) is also a random variable.

Definition 8.5 (IP)
Let k : N → N be some function with k(n) computable in poly(n) time. A language L is in IP[k]
if there is a Turing machine V such that on inputs x, r, a1, . . . , ai, V runs in time polynomial in |x|
and such that

(Completeness) x ∈ L⇒ ∃P Pr[outV 〈V, P 〉(x) = 1] ≥ 2/3 (2)
(Soundness) x 6∈ L⇒ ∀P Pr[outV 〈V, P 〉(x) = 1] ≤ 1/3. (3)

We define IP = ∪c≥1IP[nc].

Remark 8.6
The following observations on the class IP are left as an exercise (Exercise 1).

1. Allowing the prover to be probabilistic (i.e., the answer function ai depends upon some
random string used by the prover) does not change the class IP. The reason is that for
any language L, if a probabilistic prover P results in making verifier V accept with some
probability, then averaging implies there is a deterministic prover which makes V accept with
the same probability.

Web draft 2007-01-08 22:01



DRAFT

p8.4 (150) 8.3. PROVING THAT GRAPHS ARE NOT ISOMORPHIC.

Figure unavailable in pdf file.

Figure 8.1: Two isomorphic graphs.

2. Since the prover can use an arbitrary function, it can in principle use unbounded computa-
tional power (or even compute undecidable functions). However, one can show that given any
verifier V , we can compute the optimum prover (which, given x, maximizes the verifier’s ac-
ceptance probability) using poly(|x|) space (and hence 2poly(|x|) time). Thus IP ⊆ PSPACE.

3. The probabilities of correctly classifying an input can be made arbitrarily close to 1 by using
the same boosting technique we used for BPP (see Section ??): to replace 2/3 by 1−exp(−m),
sequentially repeat the protocol m times and take the majority answer. In fact, using a more
complicated proof, it can be shown that we can decrease the probability without increasing the
number of rounds using parallel repetition (i.e., the prover and verifier will run m executions
of the protocol in parallel). We note that the proof is easier for the case of public coin proofs,
which will be defined below.

4. Replacing the constant 2/3 in the completeness requirement (2) by 1 does not change the
class IP. This is a nontrivial fact. It was originally proved in a complicated way but today
can be proved using our characterization of IP later in Section 8.5.

5. In contrast replacing the constant 2/3 by 1 in the soundness condition (3) is equivalent to
having a deterministic verifier and hence reduces the class IP to NP.

6. We emphasize that the prover functions do not depend upon the verifier’s random strings,
but only on the messages/questions the verifier sends. In other words, the verifier’s random
string is private. (Often these are called private coin interactive proofs.) Later we will also
consider the model where all the verifier’s questions are simply obtained by tossing coins and
revealing them to the prover (this is known as public coins or Arthur-Merlin proofs).

8.3 Proving that graphs are not isomorphic.

We’ll now see an example of a language in IP that is not known to be in NP. Recall that the usual
ways of representing graphs —adjacency lists, adjacency matrices— involve a numbering of the
vertices. We say two graphs G1 and G2 are isomorphic if they are the same up to a renumbering
of vertices. In other words, if there is a permutation π of the labels of the nodes of G1 such that
π(G1) = G2. The graphs in figure ??, for example, are isomorphic with π = (12)(3654). (That is,
1 and 2 are mapped to each other, 3 to 6, 6 to 5, 5 to 4 and 4 to 1.) If G1 and G2 are isomorphic,
we write G1 ≡ G2. The GI problem is the following: given two graphs G1, G2 (say in adjacency
matrix representation) decide if they are isomorphic. Note that clearly GI ∈ NP, since a certificate
is simply the description of the permutation π.

The graph isomorphism problem is important in a variety of fields and has a rich history (see
[?]). Along with the factoring problem, it is the most famous NP-problem that is not known to be

Web draft 2007-01-08 22:01



DRAFT

8.4. PUBLIC COINS AND AM p8.5 (151)

either in P or NP-complete. The results of this section show that GI is unlikely to be NP-complete,
unless the polynomial hierarchy collapses. This will follow from the existence of the following proof
system for the complement of GI: the problem GNI of deciding whether two given graphs are not
isomorphic.

Protocol: Private-coin Graph Non-isomorphism

V : pick i ∈ {1, 2} uniformly randomly. Randomly permute the vertices of Gi to get a
new graph H. Send H to P .

P : identify which of G1, G2 was used to produce H. Let Gj be that graph. Send j to V .

V : accept if i = j; reject otherwise.

To see that Definition 8.5 is satisfied by the above protocol, note that ifG1 6≡ G2 then there exists
a prover such that Pr[V accepts] = 1, because if the graphs are non-isomorphic, an all-powerful
prover can certainly tell which one of the two is isomorphic to H. On the other hand, if G1 ≡ G2

the best any prover can do is to randomly guess, because a random permutation of G1 looks exactly
like a random permutation of G2. Thus in this case for every prover, Pr[V accepts] ≤ 1/2. This
probability can be reduced to 1/3 by sequential or parallel repetition.

8.4 Public coins and AM

Allowing the prover full access to the verifier’s random string leads to the model of interactive
proofs with public-coins.

Definition 8.7 (AM, MA)
For every k we denote by AM[k] the class of languages that can be decided by a k round interactive
proof in which each verifier’s message consists of sending a random string of polynomial length,
and these messages comprise of all the coins tossed by the verifier. A proof of this form is called a
public coin proof (it is sometimes also known an Arthur Merlin proof).1

We define by AM the class AM[2].2 That is, AM is the class of languages with an interactive
proof that consist of the verifier sending a random string, the prover responding with a message,
and where the decision to accept is obtained by applying a deterministic polynomial-time function
to the transcript. The class MA denotes the class of languages with 2-round public coins interactive
proof with the prover sending the first message. That is, L ∈MA if there’s a proof system for L
that consists of the prover first sending a message, and then the verifier tossing coins and applying
a polynomial-time predicate to the input, the prover’s message and the coins.

1Arthur was a famous king of medieval England and Merlin was his court magician. Babai named these classes
by drawing an analogy between the prover’s infinite power and Merlin’s magic. One “justification” for this model
is that while Merlin cannot predict the coins that Arthur will toss in the future, Arthur has no way of hiding from
Merlin’s magic the results of the coins he tossed in the past.

2Note that AM = AM[2] while IP = IP[poly]. While this is indeed somewhat inconsistent, this is the standard
notation used in the literature. We note that some sources denote the class AM[3] by AMA, the class AM[4] by
AMAM etc.

Web draft 2007-01-08 22:01



DRAFT

p8.6 (152) 8.4. PUBLIC COINS AND AM

Note that clearly for every k, AM[k] ⊆ IP[k]. The interactive proof for GNI seemed to crucially
depend upon the fact that P cannot see the random bits of V . If P knew those bits, P would know
i and so could trivially always guess correctly. Thus it may seem that allowing the verifier to keep
its coins private adds significant power to interactive proofs, and so the following result should be
quite surprising:

Theorem 8.8 ([?])
For every k : N→ N with k(n) computable in poly(n),

IP[k] ⊆ AM[k + 2]

The central idea of the proof of Theorem 8.8 can be gleaned from the proof for the special case
of GNI.

Theorem 8.9
GNI ∈ AM[k] for some constant k ≥ 2.

The key idea in the proof of Theorem 8.9 is to look at graph nonisomorphism in a different,
more quantitative, way. (Aside: This is a good example of how nontrivial interactive proofs can be
designed by recasting the problem.) Consider the set S = {H : H ≡ G1 or H ≡ G2}. Note that it
is easy to prove that a graph H is a member of S, by providing the permutation mapping either
G1 or G2 to H. The size of this set depends on whether G1 is isomorphic to G2. An n vertex graph
G has at most n! equivalent graphs. If G1 and G2 have each exactly n! equivalent graphs (this will
happen if for i = 1, 2 there’s no non-identity permutation π such that π(Gi) = Gi) we’ll have that

if G1 6≡ G2 then |S| = 2n! (4)
if G1 ≡ G2 then |S| = n! (5)

(To handle the general case that G1 or G2 may have less than n! equivalent graphs, we actually
change the definition of S to

S = {(H,π) : H ≡ G1 or H ≡ G2 and π ∈ aut(H)}

where π ∈ aut(H) if π(H) = H. It is clearly easy to prove membership in the set S and it can be
verified that S satisfies (4) and (5).)

Thus to convince the verifier that G1 6≡ G2, the prover has to convince the verifier that case (4)
holds rather than (5). This is done by using a set lower bound protocol.

8.4.1 Set Lower Bound Protocol.

In a set lower bound protocol, the prover proves to the verifier that a given set S (where membership
in S is efficiently verifiable) has cardinality at least K up to accuracy of, say, factor of 2. That
is, if |S| ≥ K then the prover can cause the verifier to accept with high probability, while if
|S| ≤ K/2 then the verifier will reject with high probability, no matter what the prover does. By
the observations above, such a protocol suffices to complete the proof of Theorem 8.9.

Web draft 2007-01-08 22:01



DRAFT

8.4. PUBLIC COINS AND AM p8.7 (153)

Tool: Pairwise independent hash functions.

The main tool we use for the set lower bound protocol is a pairwise independent hash function
collection. This is a simple but incredibly useful tool that has found numerous applications in
complexity theory and computer science at large (see Note 8.13).

Definition 8.10 (Pairwise independent hash functions)
Let Hn,k be a collection of functions from {0, 1}n to {0, 1}k. We say that Hn,k is
pairwise independent if for every x, x′ ∈ {0, 1}n with x 6= x′ and for every y, y′ ∈
{0, 1}k, Prh∈RHn,k

[h(x) = y ∧ h(x′) = y′] = 2−2n

Note that an equivalent formulation is that for every two distinct strings x, x′ ∈ {0, 1}n the
random variable 〈h(x), h(x′)〉 for h chosen at random from Hn,k is distributed according to the
uniform distribution on {0, 1}k × {0, 1}k.

Recall that we can identify the elements of {0, 1}n with the finite field (see Section A.4 in
the appendix), denoted GF(2n), containing 2n elements, whose addition (+) and multiplication (·)
operations satisfy the usual commutative and distributive laws, where and every element x has an
additive inverse (denoted by −x) and, if nonzero, a multiplicative inverse (denoted by x−1). The
following theorem provides a construction of an efficiently computable pairwise independent hash
functions (see also Exercise 4 for a different construction):

Theorem 8.11 (Efficient pairwise independent hash functions)
For every n define the collection Hn,n to be {ha,b}a,b∈GF(2n) where for every a, b ∈ GF(2n), the func-
tion ha,b : GF(2n)→ GF(2n) maps x to ax+ b. Then, Hn,n is a collection of pairwise independent
hash functions.

Remark 8.12
Theorem 8.11 implies the existence of an efficiently computable pairwise independent hash functions
Hn,k for every n, k: if k > n we can use the collection Hk,k and reduce the size of the input to n
by padding it with zeros. If k < n then we can use the collection Hn,n and truncate the last n− k
bits of the output.

Proof: For every x 6= x′ ∈ GF(2n) and y, y′ ∈ GF(2n), ha,b(x) = y and ha,b(x′) = y′ iff a, b satisfy
the equations:

a · x+ b =y
a · x′ + b =y′

These imply a · (x − x′) = y − y′ or a = (y − y′)(x − x′)−1. Since b = y − a · x, the pair 〈a, b〉 is
completely determined by these equations, and so the probability that this happens over the choice
of a, b is exactly one over the number of possible pairs, which indeed equals 1

22n . �

Web draft 2007-01-08 22:01



DRAFT

p8.8 (154) 8.4. PUBLIC COINS AND AM

Note 8.13 (The Hashing paradigm)
A hash function collection is a collection of functions mapping a large uni-
verse, say {0, 1}n, to a smaller universe, say {0, 1}k for k � n. Typically, we
require of such a collection that it maps its input in a fairly uniform way to
the output range. For example, if S is a subset of {0, 1}n then we wish that,
if h is chosen at random from the collection, then most elements of {0, 1}k
have roughly |S|2−k preimages in S (which is the expected number if h was
a completely random function). In particular, if S has size roughly 2k then
we expect the mapping to be one-to-one or almost one-to-one, and so there
should be a relatively small number of collisions: pairs x 6= x′ ∈ S such that
h(x) = h(x′). Therefore, the image of S under h should look like this:

{0,1}n

{0,1}k
|S|~2k

2n-k

h
......

In databases, hash functions are used to maintain very efficient databases
(that allow fast membership queries to a subset S ⊆ {0, 1}n of size 2k re-
quiring only 2k as opposed to 2n bits of storage). In theoretical computer
science, hash functions have a variety of uses. An example is Lemma 9.16
of the next chapter that shows that if the collection is pairwise independent
and S ⊆ {0, 1}n has size roughly 2k, then with good probability the value
0k will have exactly one preimage in S.
In all these cases it is important that the hash function is chosen at random
from some collection independently of the choice of set S. It is easy to see
that if k is small enough (e.g., k < n/2) then for every h : {0, 1}n → {0, 1}k
there is a set S ⊆ {0, 1}n of size 2k that is “very bad” for h in the sense that
all the members of S map to the same element under h.
Pairwise independent hash functions are but one example of a hash func-
tion collection. Several types of such collections are known in the literature
featuring various tradeoffs between efficiency and uniformity of output.

Web draft 2007-01-08 22:01



DRAFT

8.4. PUBLIC COINS AND AM p8.9 (155)

The lower-bound protocol.

The lower-bound protocol is as follows:

Protocol: Goldwasser-Sipser Set Lowerbound

Conditions: S ⊆ {0, 1}m is a set such that membership in S can be certified. Both
parties know a number K. The prover’s goal is to convince the verifier that |S| ≥ K
and the verifier should reject if |S| ≤ K

2 . Let k be a number such that 2k−2 ≤ K ≤
2k−1.

V: Randomly pick a function h : {0, 1}m → {0, 1}k from a pairwise independent hash
function collection Hm,k. Pick y ∈R {0, 1}k. Send h, y to prover.

P: Try to find an x ∈ S such that h(x) = y. Send such an x to V , together with a
certificate that x ∈ S.

V’s output: If certificate validates that x ∈ S and h(x) = y, accept; otherwise reject.

Let p = K
2k . If |S| ≤ K

2 then clearly |h(S)| ≤ p2k

2 and so the verifier will accept with probability
at most p

2 . The main challenge is to show that if |S| ≥ K then the verifier will accept with
probability noticeably larger than p/2 (the gap between the probabilities can then be amplified
using repetition). That is, it suffices to prove

Claim 8.13.1
Let S ⊆ {0, 1}m satisfy |S| ≤ 2k

2 . Then,

Pr
h∈RHm,k,y∈R{0,1}k

[∃x∈Sh(x) = y] ≥ 3
4
|S|
2k .

Proof: For every y ∈ {0, 1}m, we’ll prove the claim by showing that

Pr
h∈RHm,k

[∃x∈Sh(x) = y] ≥ 3
4p ,

(where p = |S|/2k). Indeed, for every x ∈ S define the event Ex to hold if h(x) = y. Then,
Pr[∃x∈Sh(x) = y] = Pr[∪x∈SEx] but by the inclusion-exclusion principle this is at least∑

x∈S

Pr[Ex]− 1
2

∑
x 6=x′∈§

Pr[Ex ∩ E′
x]

However, by pairwise independence, if x 6= x′, then Pr[Ex] = 2−k and Pr[Ex ∩ E′
x] = 2−2k and so

this probability is at least
|S|
2k
− 1

2
|S|2

2k
=
|S|
2k

(
1− |S|

2k+1

)
≥ 3

4
p

�

Web draft 2007-01-08 22:01



DRAFT

p8.10 (156) 8.4. PUBLIC COINS AND AM

Figure unavailable in pdf file.

Figure 8.2: AM[k] looks like
∏p

k, with the ∀ quantifier replaced by probabilitic choice.

Proving Theorem 8.9. The public-coin interactive proof system for GNI consists of the verifier
and prover running several iterations of the set lower bound protocol for the set S as defined
above, where the verifier accepts iff the fraction of accepting iterations was at least 0.6p (note that
both parties can compute p). Using the Chernoff bound (Theorem A.18) it can be easily seen
that a constant number of iteration will suffices to ensure completeness probability at least 2

3 and
soundness error at most 1

3 . �

Remark 8.14
How does this protocol relate to the private coin protocol of Section 8.3? The set S roughly
corresponds to the set of possible messages sent by the verifier in the protocol, where the verifier’s
message is a random element in S. If the two graphs are isomorphic then the verifier’s message
completely hides its choice of a random i ∈R {1, 2}, while if they’re not then it completely reveals it
(at least to a prover that has unbounded computation time). Thus roughly speaking in the former
case the mapping from the verifier’s coins to the message is 2-to-1 while in the latter case it is
1-to-1, resulting in a set that is twice as large. Indeed we can view the prover in the public coin
protocol as convincing the verifier that its probability of convincing the private coin verifier is large.
While there are several additional intricacies to handle, this is the idea behind the generalization
of this proof to show that IP[k] ⊆ AM[k + 2].

Remark 8.15
Note that, unlike the private coins protocol, the public coins protocol of Theorem 8.9 does not enjoy
perfect completeness, since the set lowerbound protocol does not satisfy this property. However,
we can construct a perfectly complete public-coins set lowerbound protocol (see Exercise 3), thus
implying a perfectly complete public coins proof for GNI. Again, this can be generalized to show that
any private-coins proof system (even one not satisfying perfect completeness) can be transformed
into a perfectly complete public coins system with a similar number of rounds.

8.4.2 Some properties of IP and AM

We state the following properties of IP and AM without proof:

1. (Exercise 5) AM[2] = BP ·NP where BP ·NP is the class in Definition ??. In particular it
follows thatAM[2] ⊆ Σp

3.

2. (Exercise 4) For constants k ≥ 2 we have AM[k] = AM[2]. This “collapse” is somewhat
surprising because AM[k] at first glance seems similar to PH with the ∀ quantifiers changed
to “probabilistic ∀” quantifiers, where most of the branches lead to acceptance. See Figure 8.2.

3. It is open whether there is any nice characterization of AM[σ(n)], where σ(n) is a suitably
slow growing function of n, such as log log n.

Web draft 2007-01-08 22:01



DRAFT

8.5. IP = PSPACE p8.11 (157)

8.4.3 Can GI be NP-complete?

We now prove that if GI is NP-complete then the polynomial hierarchy collapses.

Theorem 8.16 ([?])
If GI is NP-complete then Σ2 = Π2.

Proof: If GI is NP-complete then GNI is coNP-complete which implies that there exists a function
f such that for every n variable formula ϕ, ∀yϕ(y) holds iff f(ϕ) ∈ GNI. Let

ψ = ∃x∈{0,1}n∀y∈{0,1}nϕ(x, y)

be a Σ2SAT formula. We have that ψ is equivalent to

∃x∈{0,1}ng(x) ∈ GNI

where g(x) = f(ϕ�x).
Using Remark 8.15 and the comments of Section 8.4.2, we have that GNI has a two round AM

proof with perfect completeness and (after appropriate amplification) soundness error less than
2−n. Let V be the verifier algorithm for this proof system, and denote by m the length of the
verifier’s random tape and by m′ the length of the prover’s message and . We claim that ψ is
equivalent to

ψ∗ = ∀
r∈{0,1}m′∃x∈{0,1}n∃a∈{0,1}mV (g(x), r, a) = 1

Indeed, by perfect completeness if ψ is satisfiable then ψ∗ is satisfiable. If ψ is not satisfiable
then by the fact that the soundness error is at most 2−n, we have that there exists a single string
r ∈ {0, 1}m such that for every x with g(x) 6∈ GNI, there’s no a such that V (g(x), r, a) = 1, and so
ψ∗ is not satisfiable. Since ψ∗ can easily be reduced to a Π2SAT formula, we get that Σ2 ⊆ Π2,
implying (since Σ2 = coΠ2) that Σ2 = Π2. �

8.5 IP = PSPACE

In this section we show a surprising characterization of the set of languages that have interactive
proofs.

Theorem 8.17 (LFKN, Shamir, 1990)
IP = PSPACE.

Note that this is indeed quite surprising: we already saw that interaction alone does not increase
the languages we can prove beyond NP, and we tend to think of randomization as not adding
significant power to computation (e.g., we’ll see in Chapter 16 that under reasonable conjectures,
BPP = P). As noted in Section 8.4.2, we even know that languages with constant round interactive
proofs have a two round public coins proof, and are in particular contained in the polynomial
hierarchy, which is believed to be a proper subset of PSPACE. Nonetheless, it turns out that the
combination of sufficient interaction and randomness is quite powerful.

Web draft 2007-01-08 22:01



DRAFT

p8.12 (158) 8.5. IP = PSPACE

By our earlier Remark 8.6 we need only show the direction PSPACE ⊆ IP. To do so, we’ll show
that TQBF ∈ IP[poly(n)]. This is sufficient because every L ∈ PSPACE is polytime reducible to
TQBF. We note that our protocol for TQBF will use public coins and also has the property that if
the input is in TQBF then there is a prover which makes the verifier accept with probability 1.

Rather than tackle the job of designing a protocol for TQBF right away, let us first think about
how to design one for 3SAT. How can the prover convince the verifier than a given 3CNF formula
has no satisfying assignment? We show how to prove something even more general: the prover can
prove to the verifier what the number of satisfying assignments is. (In other words, we will design
a prover for #SAT.) The idea of arithmetization introduced in this proof will also prove useful in
our protocol for TQBF.

8.5.1 Arithmetization

The key idea will be to take an algebraic view of boolean formulae by representing them as polyno-
mials. Note that 0, 1 can be thought of both as truth values and as elements of some finite field F.
Thus we have the following correspondence between formulas and polynomials when the variables
take 0/1 values:

x ∧ y ←→ X · Y
¬x ←→ 1−X

x ∨ y ←→ 1− (1−X)(1− Y )
x ∨ y ∨ ¬z ←→ 1− (1−X)(1− Y )Z

Given any 3CNF formula ϕ(x1, x2, . . . , xn) with m clauses, we can write such a degree 3 polyno-
mial for each clause. Multiplying these polynomials we obtain a degree 3m multivariate polynomial
Pϕ(X1, X2, . . . , Xn) that evaluates to 1 for satisfying assignments and evaluates to 0 for unsatis-
fying assignments. (Note: we represent such a polynomial as a multiplication of all the degree 3
polynomials without “opening up” the parenthesis, and so Pϕ(X1, X2, . . . , Xn) has a representation
of size O(m).) This conversion of ϕ to Pϕ is called arithmetization. Once we have written such
a polynomial, nothing stops us from going ahead and and evaluating the polynomial when the
variables take arbitrary values from the field F instead of just 0, 1. As we will see, this gives the
verifier unexpected power over the prover.

8.5.2 Interactive protocol for #SATD

To design a protocol for 3SAT we give a protocol for #SATD, which is a decision version of the
counting problem #SAT we saw in Chapter ??:

#SATD = {〈φ,K〉 : K is the number of satisfying assignments of φ} .

and φ is a 3CNF formula of n variables and m clauses.

Theorem 8.18
#SATD ∈ IP.

Web draft 2007-01-08 22:01



DRAFT

8.5. IP = PSPACE p8.13 (159)

Proof: Given input 〈φ,K〉, we construct, by arithmetization, Pφ. The number of satisfying as-
signments #φ of φ is:

#φ =
∑

b1∈{0,1}

∑
b2∈{0,1}

· · ·
∑

bn∈{0,1}

Pφ(b1, . . . , bn) (6)

To start, the prover sends to the verifier a prime p in the interval (2n, 22n]. The verifier can check
that p is prime using a probabilistic or deterministic primality testing algorithm. All computations
described below are done in the field F = Fp of numbers modulo p. Note that since the sum in (6)
is between 0 and 2n, this equation is true over the integers iff it is true modulo p. Thus, from now
on we consider (6) as an equation in the field Fp. We’ll prove the theorem by showing a general
protocol, Sumcheck, for verifying equations such as (6).

Sumcheck protocol.

Given a degree d polynomial g(X1, . . . , Xn), an integer K, and a prime p, we present an interactive
proof for the claim

K =
∑

b1∈{0,1}

∑
b2∈{0,1}

· · ·
∑

bn∈{0,1}

g(X1, . . . , Xn) (7)

(where all computations are modulo p). To execute the protocol V will need to be able to evaluate
the polynomial g for any setting of values to the variables. Note that this clearly holds in the case
g = Pφ.

For each sequence of values b2, b3, . . . , bn to X2, X3, . . . , Xn, note that g(X1, b2, b3, . . . , bn) is a
univariate degree d polynomial in the variable X1. Thus the following is also a univariate degree d
polynomial:

h(X1) =
∑

b2∈{0,1}

· · ·
∑

bn∈{0,1}

g(X1, b2 . . . , bn)

If Claim (7) is true, then we have h(0) + h(1) = K.
Consider the following protocol:

Protocol: Sumcheck protocol to check claim (7)

V: If n = 1 check that g(1) + g(0) = K. If so accept, otherwise reject. If n ≥ 2, ask P
to send h(X1) as defined above.

P: Sends some polynomial s(X1) (if the prover is not “cheating” then we’ll have s(X1) =
h(X1)).

V: Reject if s(0) + s(1) 6= K; otherwise pick a random a. Recursively use the same
protocol to check that

s(a) =
∑

b∈{0,1}

· · ·
∑

bn∈{0,1}

g(a, b2, . . . , bn).

Web draft 2007-01-08 22:01



DRAFT

p8.14 (160) 8.5. IP = PSPACE

If Claim (7) is true, the prover that always returns the correct polynomial will always convince
V . If (7) is false then we prove that V rejects with high probability:

Pr[V rejects 〈K, g〉] ≥
(

1− d

p

)n

. (8)

With our choice of p, the right hand side is about 1 − dn/p, which is very close to 1 since d ≤ n3

and p� n4.
Assume that (7) is false. We prove (8) by induction on n. For n = 1, V simply evaluates

g(0), g(1) and rejects with probability 1 if their sum is not K. Assume the hypothesis is true for
degree d polynomials in n− 1 variables.

In the first round, the prover P is supposed to return the polynomial h. If it indeed returns
h then since h(0) + h(1) 6= K by assumption, V will immediately reject (i.e., with probability 1).
So assume that the prover returns some s(X1) different from h(X1). Since the degree d nonzero
polynomial s(X1)− h(X1) has at most d roots, there are at most d values a such that s(a) = h(a).
Thus when V picks a random a,

Pr
a

[s(a) 6= h(a)] ≥ 1− d

p
. (9)

If s(a) 6= h(a) then the prover is left with an incorrect claim to prove in the recursive step.
By the induction hypothesis, the prover fails to prove this false claim with probability at least

≥
(
1− d

p

)n−1
. Thus we have

Pr[V rejects] ≥
(

1− d

p

)
·
(

1− d

p

)n−1

=
(

1− d

p

)n

(10)

This finishes the induction.
�

8.5.3 Protocol for TQBF: proof of Theorem 8.17

We use a very similar idea to obtain a protocol for TQBF. Given a quantified Boolean formula
Ψ = ∃x1∀x2∃x3 · · · ∀xnφ(x1, . . . , xn), we use arithmetization to construct the polynomial Pφ. We
have that Ψ ∈ TQBF if and only if

0 <
∑

b1∈{0,1}

∏
b2∈{0,1}

∑
b3∈{0,1}

· · ·
∏

bn∈{0,1}

Pφ(b1, . . . , bn) (11)

A first thought is that we could use the same protocol as in the #SATD case, except check that
s(0)·s(1) = K when you have a

∏
. But, alas, multiplication, unlike addition, increases the degree of

the polynomial — after k steps, the degree could be 2k. Such polynomials may have 2k coefficients
and cannot even be transmitted in polynomial time if k � log n.

The solution is to look more closely at the polynomials that are are transmitted and their relation
to the original formula. We’ll change Ψ into a logically equivalent formula whose arithmetization

Web draft 2007-01-08 22:01



DRAFT

8.6. THE POWER OF THE PROVER p8.15 (161)

does not cause the degrees of the polynomials to be so large. The idea is similar to the way circuits
are reduced to formulas in the Cook-Levin theorem: we’ll add auxiliary variables. Specifically, we’ll
change ψ to an equivalent formula ψ′ that is not in prenex form in the following way: work from
right to left and whenever encountering a ∀ quantifier on a variable xi — that is, when considering
a postfix of the form ∀xiτ(x1, . . . , xi), where τ may contain quantifiers over additional variables
xi+1, . . . , xn — ensure that the variables x1, . . . , xi never appear to the right of another ∀ quantifier
in τ by changing the postfix to ∀xi∃x′1, . . . , x′i(x′1 = x1)∧ · · ·∧ (x′i = xi)∧ τ(x1, . . . , xn). Continuing
this way we’ll obtain the formula ψ′ which will have O(n2) variables and will be at most O(n2)
larger than ψ. It can be seen that the natural arithmetization for ψ′ will lead to the polynomials
transmitted in the sumcheck protocol never having degree more than 2.

Note that the prover needs to prove that the arithmetization of Ψ′ leads to a number K different
than 0, but because of the multiplications this number can be as large as 22n

. Nevertheless the
prover can find a prime p between 0 and 2n such that K mod p 6= 0 (in fact as we saw in Chapter 7
a random prime will do). This finishes the proof of Theorem 8.17. �

Remark 8.19
An alternative way to obtain the same result (or, more accurately, an alternative way to describe
the same protocol) is to notice that for x ∈ {0, 1}, xk = x for all k ≥ 1. Thus, in principle we can
convert any polynomial p(x1, . . . , xn) into a multilinear polynomial q(x1, . . . , xn) (i.e., the degree of
q(·) in any variable xi is at most one) that agrees with p(·) on all x1, . . . , xn ∈ {0, 1}. Specifically,
for any polynomial p(·) let Li(p) be the polynomial defined as follows

Li(p)(x1, . . . , xn) = xiP (x1, . . . , xi−1, 1, xi+1, . . . , xn)+
(1− xi)P (x1, . . . , xi−1, 0, xi+1, . . . , xn) (12)

then L1(L2(· · · (Ln(p) · · · ) is such a multilinear polynomial agreeing with p(·) on all values in {0, 1}.
We can thus use O(n2) invocations operator to convert (11) into an equivalent form where all the
intermediate polynomials sent in the sumcheck protocol are multilinear. We’ll use this equivalent
form to run the sumcheck protocol, where in addition to having round for a

∑
or

∏
operator,

we’ll also have a round for each application of the operator L (in such rounds the prover will send
a polynomial of degree at most 2).

8.6 The power of the prover

A curious feature of many known interactive proof systems is that in order to prove membership
in language L, the prover needs to do more powerful computation than just deciding membership
in L. We give some examples.

1. The public coin system for graph nonisomorphism in Theorem 8.9 requires the prover to
produce, for some randomly chosen hash function h and a random element y in the range of
h, a graph H such that h(H) is isomorphic to either G1 or G2 and h(x) = y. This seems
harder than just solving graph non-isomorphism.

Web draft 2007-01-08 22:01



DRAFT

p8.16 (162) 8.7. PROGRAM CHECKING

2. The interactive proof for 3SAT, a language in coNP, requires the prover to do #P compu-
tations, doing summations of exponentially many terms. (Recall that all of PH is in P#P.)

In both cases, it is an open problem whether the protocol can be redesigned to use a weaker
prover.

Note that the protocol for TQBF is different in that the prover’s replies can be computed in
PSPACE as well. This observation underlies the following result, which is in the same spirit
as the Karp-Lipton results described in Chapter ??, except the conclusion is stronger since MA
is contained in Σ2 (indeed, a perfectly complete MA-proof system for L trivially implies that
L ∈ Σ2).

Theorem 8.20
If PSPACE ⊆ P/poly then PSPACE = MA.

Proof: If PSPACE ⊆ P/poly then the prover in our TQBF protocol can be replaced by a circuit
of polynomial size. Merlin (the prover) can just give this circuit to Arthur (the verifier) in Round
1, who then runs the interactive proof using this “prover.” No more interaction is needed. Note
that there is no need for Arthur to put blind trust in Merlin’s circuit, since the correctness proof of
the TQBF protocol shows that if the formula is not true, then no prover can make Arthur accept
with high probability. �

In fact, using the Karp-Lipton theorem one can prove a stronger statement, see Lemma ??
below.

8.7 Program Checking

The discovery of the interactive protocol for the permanent problem was triggered by a field called
program checking. Blum and Kannan’s motivation for introducing this field was the fact that
program verification (deciding whether or not a given program solves a certain computational task)
is undecidable. They observed that in many cases we can guarantee a weaker guarantee of the
program’s “correctness” on an instance by instance basis. This is encapsulated in the notion of
a program checker. A checker C for a program P is itself another program that may run P as
a subroutine. Whenever P is run on an input x, C’s job is to detect if P ’s answer is incorrect
(“buggy”) on that particular instance x. To do this, the checker may also compute P ’s answer on
some other inputs. Program checking is sometimes also called instance checking, perhaps a more
accurate name, since the fact that the checker did not detect a bug does not mean that P is a
correct program in general, but only that P ’s answer on x is correct.

Definition 8.21
Let P be a claimed program for computational task T . A checker for T is a probabilistic polynomial
time TM, C, that, given any x, has the following behavior:

1. If P is a correct program for T (i.e., ∀y P (y) = T (y)), then P [CP accepts P (x)] ≥ 2
3

2. If P (x) 6= T (x) then P [CP accepts P (x)] < 1
3

Web draft 2007-01-08 22:01



DRAFT

8.7. PROGRAM CHECKING p8.17 (163)

Note that in the case that P is correct on x (i.e., P (x) = C(x)) but the program P is not correct
everywhere, there is no guarantee on the output of the checker.

Surprisingly, for many problems, checking seems easier than actually computing the problem.
(Blum and Kannan’s suggestion was to build checkers into the software whenever this is true; the
overhead introduced by the checker would be negligible.)

Example 8.22 (Checker for Graph Non-Isomorphism)
The input for the problem of Graph Non-Isomorphism is a pair of labelled graphs 〈G1, G2〉, and
the problem is to decide whether G1 ≡ G2. As noted, we do not know of an efficient algorithm for
this problem. But it has an efficient checker.

There are two types of inputs, depending upon whether or not the program claims G1 ≡ G2.
If it claims that G1 ≡ G2 then one can change the graph little by little and use the program to
actually obtain the permutation π (). We now show how to check the claim that G1 6≡ G2 using
our earlier interactive proof of Graph non-isomorphism.

Recall the IP for Graph Non-Isomorphism:

• In case prover admits G1 6≡ G2 repeat k times:

• Choose i ∈R {1, 2}. Permute Gi randomly into H

• Ask the prover 〈G1,H〉; 〈G2,H〉 and check to see if the prover’s first answer is consistent.

Given a computer program that supposedly computes graph isomorphism, P , how would we check
its correctness? The program checking approach suggests to use an IP while regarding the program
as the prover. Let C be a program that performs the above protocol with P as the prover, then:

Theorem 8.23
If P is a correct program for Graph Non-Isomorphism then C outputs ”correct” always. Otherwise,

if P (G1, G2) is incorrect then P [C outputs ”correct” ] ≤ 2−k. Moreover, C runs in polynomial time.

8.7.1 Languages that have checkers

Whenever a language L has an interactive proof system where the prover can be implemented
using oracle access to L, this implies that L has a checker. Thus, the following theorem is a direct
consequence of the interactive proofs we have seen:

Theorem 8.24
The problems Graph Isomorphism (GI), Permanent (perm) and True Quantified Boolean Formulae
(TQBF) have checkers.

Using the fact that P-complete languages are reducible to each other via NC-reductions, it suffices
to show a checker in NC for one P-complete language (as was shown by Blum & Kannan) to obtain
the following interesting fact:

Web draft 2007-01-08 22:01



DRAFT

p8.18 (164) 8.8. MULTIPROVER INTERACTIVE PROOFS (MIP)

Theorem 8.25
For any P-complete language there exists a program checker in NC

Since we believe that P-complete languages cannot be computed in NC, this provides additional
evidence that checking is easier than actual computation.

8.8 Multiprover interactive proofs (MIP)

It is also possible to define interactive proofs that involve more than one prover. The important
assumption is that the provers do not communicate with each other during the protocol. They
may communicate before the protocol starts, and in particular, agree upon a shared strategy for
answering questions. (The analogy often given is that of the police interrogating two suspects in
separate rooms. The suspects may be accomplices who have decided upon a common story to tell
the police, but since they are interrogated separately they may inadvertently reveal an inconsistency
in the story.)

The set of languages with multiprover interactive provers is call MIP. The formal definition is
analogous to Definition 8.5. We assume there are two provers (though one can also study the case
of polynomially many provers; see the exercises), and in each round the verifier sends a query to
each of them —the two queries need not be the same. Each prover sends a response in each round.

Clearly, IP ⊆ MIP since we can always simply ignore one prover. However,it turns out that
MIP is probably strictly larger than IP (unless PSPACE = NEXP). That is, we have:

Theorem 8.26 ([?])
NEXP = MIP

We will outline a proof of this theorem in Chapter ??. One thing that we can do using two
rounds is to force non-adaptivity. That is, consider the interactive proof as an “interrogation”
where the verifier asks questions and gets back answers from the prover. If the verifier wants to
ensure that the answer of a prover to the question q is a function only of q and does not depend
on the previous questions the prover heard, the prover can ask the second prover the question q
and accept only if both answers agree with one another. This technique was used to show that
multi-prover interactive proofs can be used to implement (and in fact are equivalent to) a model
of a “probabilistically checkable proof in the sky”. In this model we go back to an NP-like notion
of a proof as a static string, but this string may be huge and so is best thought of as a huge table,
consisting of the prover’s answers to all the possible verifier’s questions. The verifier checks the
proof by looking at only a few entries in this table, that are chosen randomly from some distribution.
If we let the class PCP[r, q] be the set of languages that can be proven using a table of size 2r and
q queries to this table then Theorem 8.26 can be restated as

Theorem 8.27 (Theorem 8.26, restated)
NEXP = PCP[poly,poly] = ∪cPCP[nc, nc]

It turns out Theorem 8.26 can be scaled down to to obtain NP = PCP[polylog,polylog]. In
fact (with a lot of work) the following is known:

Web draft 2007-01-08 22:01



DRAFT

8.8. MULTIPROVER INTERACTIVE PROOFS (MIP) p8.19 (165)

Theorem 8.28 (The PCP theorem, [?, ?])
NP = PCP[O(log n), O(1)]

This theorem, which will be proven in Chapter 18, has had many applications in complexity,
and in particular establishing that for many NP-complete optimization problems, obtaining an
approximately optimal solution is as hard as coming up with the optimal solution itself. Thus, it
seems that complexity theory has gone a full circle with interactive proofs: by adding interaction,
randomization, and multiple provers, and getting to classes as high as NEXP, we have gained new
and fundamental insights on the class NP the represents static deterministic proofs (or equivalently,
efficiently verifiable search problems).

What have we learned?

• An interactive proof is a generalization of mathematical proofs in which the
prover and polynomial-time probabilistic verifier interact.

• Allowing randomization and interaction seems to add significantly more power
to proof system: the class IP of languages provable by a polynomial-time
interactive proofs is equal to PSPACE.

• All languages provable by a constant round proof system are in the class AM:
that is, they have a proof system consisting of the the verifier sending a single
random string to the prover, and the prover responding with a single message.

Chapter notes and history

Interactive proofs were defined in 1985 by Goldwasser, Micali, Rackoff [?] for cryptographic appli-
cations and (independently, and using the public coin definition) by Babai and Moran [?]. The
private coins interactive proof for graph non-isomorphism was given by Goldreich, Micali and
Wigderson [?]. Simulations of private coins by public coins we given by Goldwasser and Sipser [?].
The general feeling at the time was that interactive proofs are only a “slight” extension of NP and
that not even 3SAT has interactive proofs. The result IP = PSPACE was a big surprise, and the
story of its discovery is very interesting.

In the late 1980s, Blum and Kannan [?] introduced the notion of program checking. Around
the same time, manuscripts of Beaver and Feigenbaum [?] and Lipton [?] appeared. Inspired by
some of these developments, Nisan proved in December 1989 that #SAT has multiprover interactive
proofs. He announced his proof in an email to several colleagues and then left on vacation to South
America. This email motivated a flurry of activity in research groups around the world. Lund,
Fortnow, Karloff showed that #SAT is in IP (they added Nisan as a coauthor and the final paper
is [?]). Then Shamir showed that IP =PSPACE [?] and Babai, Fortnow and Lund [?] showed
MIP = NEXP. The entire story —as well as related developments—are described in Babai’s
entertaining survey [?].

Vadhan [?] explores some questions related to the power of the prover.

Web draft 2007-01-08 22:01



DRAFT

p8.20 (166) 8.8. MULTIPROVER INTERACTIVE PROOFS (MIP)

The result that approximating the shortest vector is probably not NP-hard (as mentioned in
the introduction) is due to Goldreich and Goldwasser [?].

Exercises

§1 Prove the assertions in Remark 8.6. That is, prove:

(a) Let IP′ denote the class obtained by allowing the prover to be probabilistic in Defini-
tion 8.5. That is, the prover’s strategy can be chosen at random from some distribution
on functions. Prove that IP′ = IP.

(b) Prove that IP ⊆ PSPACE.

(c) Let IP′ denote the class obtained by changing the constant 2/3 in (2) and (3) to 1−2−|x|.
Prove that IP′ = IP.

(d) Let IP′ denote the class obtained by changing the constant 2/3 in (2) to 1. Prove that
IP′ = IP.

(e) Let IP′ denote the class obtained by changing the constant 2/3 in (3) to 1. Prove that
IP′ = NP.

§2 We say integer y is a quadratic residue modulo m if there is an integer x such that y ≡ x2

(mod m). Show that the following language is in IP[2]:

QNR = {(y,m) : y is not a quadratic residue modulo m} .

§3 Prove that there exists a perfectly complete AM[O(1)] protocol for the proving a lowerbound
on set size.

Hint:Firstnotethatinthecurrentsetlowerboundprotocolwe
canhavetheproverchoosethehashfunction.Considertheeas-
iercaseofconstructingaprotocoltodistinguishbetweenthecase
|S|≥Kand|S|≤

1
cKwherec>2canbeevenafunctionof

K.Ifcislargeenoughthewecanallowtheprovertouseseveral
hashfunctionsh1,...,hi,anditcanbeproventhatifiislarge
enoughwe’llhave∪ihi(S)={0,1}

k
.Thegapcanbeincreasedby

consideringinsteadofSthesetS
`
,thatisthe`timesCartesian

productofS.

§4 Prove that for every constant k ≥ 2, AM[k + 1] ⊆ AM[k].

§5 Show that AM[2] = BP ·NP

§6 [?] Show that if EXP ⊆ P/poly then EXP = MA.

Hint:TheinteractiveproofforTQBFrequiresaproverthatisa
PSPACEmachine.

Web draft 2007-01-08 22:01



DRAFT

8.A. INTERACTIVE PROOF FOR THE PERMANENT p8.21 (167)

§7 Show that the problem GI is downward self reducible. That is, prove that given two graphs
G1,G2 on n vertices and access to a subroutine P that solves the GI problem on graphs with
up to n− 1 vertices, we can decide whether or not G1 and G2 are isomorphic in polynomial
time.

§8 Prove that in the case that G1 and G2 are isomorphic we can obtain the permutation π
mapping G1 to G2 using the procedure of the above exercise. Use this to complete the proof
in Example 8.22 and show that graph isomorphism has a checker. Specifically, you have to
show that if the program claims that G1 ≡ G2 then we can do some further investigation
(including calling the programs on other inputs) and with high probability conclude that
either (a) conclude that the program was right on this input or (b) the program is wrong on
some input and hence is not a correct program for graph isomorphism.

§9 Define a language L to be downward self reducible there’s a polynomial-time algorithm R that
for any n and x ∈ {0, 1}n, RLn−1(x) = L(x) where by Lk we denote an oracle that solves L
on inputs of size at most k. Prove that if L is downward self reducible than L ∈ PSPACE.

§10 Show that MIP ⊆ NEXP.

§11 Show that if we redefine multiprover interactive proofs to allow, instead of two provers, as
many as m(n) = poly(n) provers on inputs of size n, then the class MIP is unchanged.

Hint:Showhowtosimulatepoly(n)proversusingtwo.Inthis
simulation,oneoftheproversplaystheroleofallm(n)provers,
andtheotherproverisaskedtosimulateoneoftheprovers,chosen
randomlyfromamongthem(n)provers.Thenrepeatthisafew
times.

8.A Interactive proof for the Permanent

The permanent is defined as follows:

Definition 8.29
Let A ∈ Fn×n be a matrix over the field F . The permanent of A is:

perm(A) =
∑
σ∈Sn

n∏
i=1

ai,σ(i)

The problem of calculating the permanent is clearly in PSPACE. In Chapter 9 we will see that if
the permanent can be computed in polynomial time then P = NP, and hence this problem likely
does not have a polynomial-time algorithm.

Although the existence of an interactive proof for the Permanent follows from that for #SAT
and TQBF, we describe a specialized protocol as well. This is both for historical context (this
protocol was discovered before the other two protocols) and also because this protocol may be
helpful for further research. (One example will appear in a later chapter.)

Web draft 2007-01-08 22:01



DRAFT

p8.22 (168) 8.A. INTERACTIVE PROOF FOR THE PERMANENT

We use the following observation:

f(x1, x2, ..., xn) := perm


x1,1 x1,2 . . . x1,n

x2,1
. . . ... x2,n

...
...

. . .
...

xn,1 xn,2 . . . xn,n


is a degree n polynomial since

f(x1, x2, . . . , xn) =
∑
σ∈Sn

n∏
i=1

xi,σ(i).

We now show two properties of the permanent problem. The first is random self reducibility, earlier
encountered in Section ??:

Theorem 8.30 (Lipton ’88)
There is a randomized algorithm that, given an oracle that can compute the permanent on 1− 1

3n
fraction of the inputs in Fn×n (where the finite field F has size > 3n), can compute the permanent
on all inputs correctly with high probability.

Proof: Let A be some input matrix. Pick a random matrix R ∈R Fn×n and let B(x) := A+ x ·R
for a variable x. Notice that:

• f(x) := perm(B) is a degree n univariate polynomial.

• For any fixed b 6= 0, B(b) is a random matrix, hence the probability that oracle computes
perm(B(b)) correctly is at least 1− 1

3n .

Now the algorithm for computing the permanent of A is straightforward: query oracle on all
matrices {B(i)|1 ≤ i ≤ n + 1}. According to the union bound, with probability of at least
1− n+1

n ≈ 2
3 the oracle will compute the permanent correctly on all matrices.

Recall the fact (see Section ?? in Appendix A) that given n + 1 (point, value) pairs {(ai, bi)|i ∈
[n+1]}, there exists a unique a degree n polynomial p that satisfies ∀i p(ai) = bi. Therefore, given
that the values B(i) are correct, the algorithm can interpolate the polynomial B(x) and compute
B(0) = A. �

Note: The above theorem can be strengthened to be based on the assumption that the oracle can
compute the permanent on a fraction of 1

2 +ε for any constant ε > 0 of the inputs. The observation
is that not all values of the polynomial must be correct for unique interpolation. See Chapter ??

Another property of the permanent problem is downward self reducibility, encountered earlier in
context of SAT:

perm(A) =
n∑

i=1

a1iperm(A1,i),

where A1,i is a (n−1)× (n−1) sub-matrix of A obtained by removing the 1’st row and i’th column
of A (recall the analogous formula for the determinant uses alternating signs).

Web draft 2007-01-08 22:01



DRAFT

8.A. INTERACTIVE PROOF FOR THE PERMANENT p8.23 (169)

Definition 8.31
Define a (n−1)× (n−1) matrix DA(x), such that each entry contains a degree n polynomial. This
polynomial is uniquely defined by the values of the matrices {A1,i|i ∈ [n]}. That is:

∀i ∈ [n] . DA(i) = A1,i

Where DA(i) is the matrix DA(x) with i substituted for x. (notice that these equalities force n
points and values on them for each polynomial at a certain entry of DA(x), and hence according
to the previously mentioned fact determine this polynomial uniquely)

Observation: perm(DA(x)) is a degree n(n− 1) polynomial in x.

8.A.1 The protocol

We now show an interactive proof for the permanent (the decision problem is whether perm(A) = k
for some value k):

• Round 1: Prover sends to verifier a polynomial g(x) of degree n(n− 1), which is supposedly
perm(DA(x)).

• Round 2: Verifier checks whether:

k =
m∑

i=1

a1,ig(i)

If not, rejects at once. Otherwise, verifier picks a random element of the field b1 ∈R F and
asks the prover to prove that g(b1) = perm(DA(b1)). This reduces the matrix dimension to
(n− 2)× (n− 2).

...

• Round 2(n − 1) − 1: Prover sends to verifier a polynomial of degree 2, which is supposedly
the permanent of a 2× 2 matrix.

• Round 2(n − 1): Verifier is left with a 2 × 2 matrix and calculates the permanent of this
matrix and decides appropriately.

Claim 8.32
The above protocol is indeed an interactive proof for perm.

Proof: If perm(A) = k, then there exists a prover that makes the verifier accept with probability
1, this prover just returns the correct values of the polynomials according to definition.
On the other hand, suppose that perm(A) 6= k. If on the first round, the polynomial g(x) sent is
the correct polynomial DA(x), then:

k 6=
m∑

i=1

a1,ig(i) = perm(A)

Web draft 2007-01-08 22:01



DRAFT

p8.24 (170) 8.A. INTERACTIVE PROOF FOR THE PERMANENT

And the verifier would reject. Hence g(x) 6= DA(x). According to the fact on polynomials stated
above, these polynomials can agree on at most n(n − 1) points. Hence, the probability that they
would agree on the randomly chosen point b1 is at most n(n−1)

|F | . The same considerations apply to
all subsequent rounds if exist, and the overall probability that the verifier will not accepts is thus
(assuming |F | ≥ 10n3 and sufficiently large n):

Pr ≥
(

1− n(n− 1)
|F |

)
·
(

1− (n− 1)(n− 2)
|F |

)
· ...

(
1− 3 · 2

|F |

)
≥

(
1− n(n− 1)

|F |

)n−1

≥ 1
2

�

Web draft 2007-01-08 22:01


	Interactive proofs
	Warmup: Interactive proofs with a deterministic verifier
	The class IP
	Proving that graphs are not isomorphic.
	Public coins and AM
	Set Lower Bound Protocol.
	Tool: Pairwise independent hash functions.
	The lower-bound protocol.

	Some properties of IP and AM
	Can GI be NP-complete?

	IP = PSPACE
	Arithmetization
	Interactive protocol for #SATD
	Sumcheck protocol.

	Protocol for TQBF: proof of Theorem 8.17

	The power of the prover
	Program Checking
	Languages that have checkers

	Multiprover interactive proofs (MIP)
	Chapter notes and history
	Exercises
	Interactive proof for the Permanent
	The protocol



