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Chapter 21
Logic in complexity theory

VERY SKETCHY

As mentioned in the book’s introduction, complexity theory (indeed, all of computer science)
arose from developments in mathematical logic in the first half of the century. Mathematical logic
continues to exert an influence today, suggesting terminology and choice of problems (e.g., “boolean
satisfiability”) as well as approaches for attacking complexity’s central open questions. This chapter
is an introduction to the basic concepts.

Mathematical logic has also influenced many other areas of computer science, such as program-
ming languages, program verification, and model checking. We will not touch upon them, except
to note that they supply interesting examples of hard computational problems —ranging from
NP-complete to EXPSPACE-complete to undecidable.

The rest of the chapter assumes only a nodding familiarity with logic terminology, which we
now recount informally; for details see a logic text.

A logic usually refers to a set of rules about constructing valid sentences. Here are a few logics
we will encounter. Propositional logic concerns sentences such as (p V —q) A (—p V r) where p, q,r
are boolean variables. Recall that the SAT problem consists of determining the satisfiability of
such sentences. In first order logic, we allow relation and function symbols as well as quantification
symbols 3 and V. For instance, the statement VzS(x) # x is a first order sentence in which z is
quantified universally, S() is a unary relation symbol and # is a binary relation. Such logics are
used in well-known axiomatizations of mathematics, such as Euclidean geometry, Peano Arithmetic
or Zermelo Frankel set theory. Finally, second order logic allows sentences in which one is allowed
quantification over structures, i.e., functions and relations. An example of a second order sentence
is 3SVzS(z) # x, where S is a unary relation symbol.

A sentence (or collection of sentences) in a logic has no intrinsic “meaning.” The meaning
—including truth or falsehood—can be discussed only with reference to a structure, which gives
a way of interpreting all symbols in the sentence. To give an example, Peano arithmetic consists
of five sentences (“axioms”) in a logic that consists of symbols like S(z), =, + etc. The standard
structure of these sentences is the set of positive integers, with S() given the intepretation of
“successor function,” + given the interpretation of addition, and so on. A structure is said to be a
model for a sentence or a group of sentences if those sentences are true in that structure.

Finally, a proof system consists of a set of sentences 3. called axioms and one or more derivation
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rules for deriving new sentences from the axioms. We say that sentence o can be proved from 3,
denoted X F o, if it can be derived from ¥ using a finite number of applications of the derivation
rules. A proveable sentence is called a theorem.

Note that a theorem is a result of a mechanical (essentially, algorithmic) process of applying
derivation rules to the axioms. There is a related notion of whether or not o is logically implied by
Y, denoted X = o, which means that every model of ¥ is also a model of o. In other words, there
is no “counterexample model” in which the axioms Y are true but ¢ is not. The two notions are in
general different but Godel in his completeness theorem for first order theories exhibited a natural
set of derivation rules such that logically implied sentences are exactly the set of theorems. (This
result was a stepping stone to his even more famous incompleteness theorem.)

Later in this chapter we give a complexity-theoretic definition of a proof system, and introduce
the area of proof complexity that studies the size of the smallest proof of a mathematical statement
in a given proof system.

21.1 Logical definitions of complexity classes

Just as Church and others defined computation using logic without referring to any kind of com-
puting machine, it is possible to give “machineless” characterizations of many complexity classes
using logic. We describe a few examples below.

21.1.1 Fagin’s definition of NP

In 1974, just as the theory of NP-completeness was coming into its own, Fagin showed how to
define NP using second-order logic. We describe his idea using an example.

ExaAMPLE 21.1
(Representing 3-COLOR) We show how to represent the set of 3-colorable graphs using second
order logic.

Let E be a symbol for a binary relation, and Cy, Ci,Cs be symbols for unary relations, and
¢(E,Cp,C1,C2) be a first order formula that is a conjunction of the following formulae where
i+ 1,7+ 2 are meant to be understood modulo 3:

Vu,v  E(u,v) = E(v,u)

Vu  Ni=123 (Ci(u) = 2(Cit1(u) V Ciya(u))
VuCi(u) V Cig1(u) V Cipa(u)

Vu, v E(u,v) = Ni=1,2,3(Ci(u) = =C;(v))

What set of E’s defined on a finite set satisfy 3Cy3C13Co0(E, Cy, C1,C2)? If E is defined on a
universe of size n (i.e., u,v take values in this universe) then (1) says that F is symmetric, i.e., it
may be viewed as the edge set of an undirected graph on n vertices. Conditions (2) and (3) say that
Co, C1, Cy partition the vertices into three classes. Finally, condition (4) says that the partition is
a valid coloring.
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Now we can sketch the general result. To represent a general NP problem, there is a unary
relation symbol that represents the input (in the above case, E'). The witness is a tableau (see
Chapter 2) of an accepting computation. If the tableau has size n*, the witness can be represented
by a k-ary relation (in the above case the witness is a 3-coloring, which has representation size 3n
and hence was represented using 3 unary relations). The first order formula uses the Cook-Levin
observation that the tableau is correct iff it is correct in all 2 x 3 “windows”.

The formal statement of Fagin’s theorem is as follows; the proof is left as an exercise.

THEOREM 21.2 (FAGIN)
To be written.

21.1.2 MAX-SNP
21.2 Proof complexity as an approach to NP versus coNP

Proof complexity tries to study the size of the smallest proof of a statement in a given proof
system. First, we need a formal definition of what a proof system is. The following definition due
to Cook and Reckow focuses attention on the intuitive property that a mathematical proof is “easy
to check.”

DEFINITION 21.3
A proof system consists of a polynomial-time Turing machine M. A statement T is said to be a
theorem of this proof system iff there is a string 7 € {0,1}* such that M accepts (T, 7).

If T is a theorem of proof system M, then the proof complexity of T with respect to M is the
minimun £ such that there is some 7 € {0, l}k for which M accepts (T, ).

Note that the definition of theoremhood ignores the issue of the length of the proof, and insists
only that the M’s running time is polynomial in the input length |T'| + |r|. The following is an
easy consequence of the definition and the motivation for much of the field of proof complexity.

THEOREM 21.4
A proof system M in which SAT has polynomial proof complexity exists iff NP = coNP.

Many branches of mathematics, including logic, algebra, geometry, etc. give rise to proof sys-
tems. Algorithms for SAT and automated theorem provers (popular in some areas of computer
science) also may be viewed as proof systems.

21.2.1 Resolution

This concerns
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21.2.2 Frege Systems

21.2.3 Polynomial calculus

21.3 Is P # NP unproveable?
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