
DRAFT

i

Computational Complexity: A Modern
Approach

Draft of a book: Dated January 2007
Comments welcome!

Sanjeev Arora and Boaz Barak
Princeton University

complexitybook@gmail.com

Not to be reproduced or distributed without the authors’ permission

This is an Internet draft. Some chapters are more finished than others. References and
attributions are very preliminary and we apologize in advance for any omissions (but hope you

will nevertheless point them out to us).

Please send us bugs, typos, missing references or general comments to
complexitybook@gmail.com — Thank You!!

DRAFT

ii

DRAFT

Chapter 18

PCP and Hardness of Approximation

“...most problem reductions do not create or preserve such gaps...To create such a
gap in the generic reduction (cf. Cook)...also seems doubtful. The intuitive reason
is that computation is an inherently unstable, non-robust mathematical object, in the
the sense that it can be turned from non-accepting to accepting by changes that would
be insignificant in any reasonable metric.”
Papadimitriou and Yannakakis, 1991 [?]

The PCP Theorem provides an interesting new characterization for NP, as the set of languages
that have a “locally testable” membership proof. It is reminiscent of —and was motivated by—
results such as IP =PSPACE. Its essence is the following:

Suppose somebody wants to convince you that a Boolean formula is satisfiable. He could present
the usual certificate, namely, a satisfying assignment, which you could then check by substituting
back into the formula. However, doing this requires reading the entire certificate. The PCP
Theorem shows an interesting alternative: this person can easily rewrite his certificate so you
can verify it by probabilistically selecting a constant number of locations—as low as 3 bits— to
examine in it. Furthermore, this probabilistic verification has the following properties: (1) A
correct certificate will never fail to convince you (that is, no choice of your random coins will make
you reject it) and (2) If the formula is unsatisfiable, then you are guaranteed to reject every claimed
certificate with high probability.

Of course, since Boolean satisfiability is NP-complete, every other NP language can be deter-
ministically and efficiently reduced to it. Thus the PCP Theorem applies to every NP language.
We mention one counterintuitive consequence. Let A be any one of the usual axiomatic systems of
mathematics for which proofs can be verified by a deterministic TM in time that is polynomial in
the length of the proof. Recall the following language is in NP:

L = {〈ϕ, 1n〉 : ϕ has a proof in A of length ≤ n} .

The PCP Theorem asserts that L has probabilistically checkable certificates. Such certificate
can be viewed as an alternative notion of “proof” for mathematical statements that is just as valid
as the usual notion. However, unlike standard mathematical proofs, where every line of the proof

Web draft 2007-01-08 22:03
Complexity Theory: A Modern Approach. © 2006 Sanjeev Arora and Boaz Barak. References and attributions are
still incomplete.

p18.1 (345)

DRAFT

p18.2 (346) 18.1. PCP AND LOCALLY TESTABLE PROOFS

has to be checked to verify its validity, this new notion guarantees that proofs are probabilistically
checkable by examining only a constant number of bits in them1.

This new, “robust” notion of certificate/proof has an important consequence: it implies that
many optimization problems are NP-hard not only to solve exactly but even to approximate. As
mentioned in Chapter 2, the P versus NP question is practically important —as opposed to “just”
philosophically important— because thousands of real-life combinatorial optimization problems are
NP-hard. By showing that even computing approximate solutions to many of these problems is
NP-hard, the PCP Theorem extends the practical importance of the theory of NP-completeness,
as well as its philosophical significance.

This seemingly mysterious connection between the PCP Theorem —which concerns probabilis-
tic checking of certificates— and the NP-hardness of computing approximate solutions is actually
quite straightforward. All NP-hardness results ultimately derive from the Cook-Levin theorem
(Section 2.3), which expresses accepting computations of a nondeterministic Turing Machine with
satisfying assignments to a Boolean formula. Unfortunately, the standard representations of com-
putation are quite nonrobust, meaning that they can be incorrect if even one bit is incorrect (see
the quote at the start of this chapter). The PCP Theorem, by giving a robust representation of
the certificate for NP languages, allow new types of reductions; see Section 18.2.3.

Below, we use the term “PCP Theorems” for the body of other results of a similar nature to
the PCP Theorem that found numerous applications in complexity theory. Some important ones
appear in the next Chapter, including one that improves the PCP Theorem so that verification is
possible by reading only 3 bits in the proof!

18.1 PCP and Locally Testable Proofs

According to our usual definition, language L is in NP if there is a poly-time Turing machine V
(“verifier”) that, given input x, checks certificates (or membership proofs) to the effect that x ∈ L.
This means,

x ∈ L⇒ ∃π s.t. V π(x) = 1
x /∈ L⇒ ∀π V π(x) = 0,

where V π denotes “a verifier with access to certificate π”.
The class PCP (short for “Probabilistically Checkable Proofs”) is a generalization of this notion,

with the following changes. First, the verifier is probabilistic. Second, the verifier has random access
to the proof string Π. This means that each bit of the proof string can be independently queried
by the verifier via a special address tape: if the verifier desires say the ith bit in the proof string,
it writes i on the address tape and then receives the bit π[i].2 (This is reminiscent of oracle TMs
introduced in Chapter 3.) The definition of PCP treats queries to the proof as a precious resource,
to be used sparingly. Note also that since the address size is logarithmic in the proof size, this model
in principle allows a polynomial-time verifier to check membership proofs of exponential size.

1One newspaper article about the discovery of the PCP Theorem carried the headline “New shortcut found for
long math proofs!”

2Though widely used, the term “random access” is misleading since it doesn’t involve any notion of randomness
per se. “Indexed access” would be more accurate.

Web draft 2007-01-08 22:03

DRAFT

18.1. PCP AND LOCALLY TESTABLE PROOFS p18.3 (347)

Verifiers can be adaptive or nonadaptive. A nonadaptive verifier selects its queries based only
on its input and random tape, whereas an adaptive verifier can in addition rely upon bits it has
already queried in π to select its next queries. We restrict verifiers to be nonadaptive, since most
PCP Theorems can be proved using nonadaptive verifiers. (But Exercise 3 explores the power of
adaptive queries.)

Verifier
Input: x in {0,1}n
r(n) coins

q(n) queries

proof: π

Figure 18.1: A PCP verifier for a language L gets an input x and random access to a string π. If x ∈ L then there
exists a string π that makes the verifier accepts, while if x 6∈ L then the verifier rejects every proof π with probability
at least 1/2.

Definition 18.1 ((r, q)-verifier)
Let L be a language and q, r : N → N. We say that L has an (r(n), q(n))-verifier if there’s a
polynomial-time probabilistic algorithm V satisfying:

Efficiency: On input a string x ∈ {0, 1}n and given random access to a string π ∈ {0, 1}∗ (which
we call the proof), V uses at most r(n) random coins and makes at most q(n) non-adaptive
queries to locations of π (see Figure 18.1). Then it outputs “1”(for “accept”) or “0” (for
“reject”). We use the notation V π(x) to denote the random variable representing V ’s output
on input x and with random access to π.

Completeness: If x ∈ L then there exists a proof π ∈ {0, 1}∗ such that Pr[V π(x) = 1] = 1. We
call π the correct proof for x.

Soundness: If x 6∈ L then for every proof π ∈ {0, 1}∗, Pr[V π(x) = 1] ≤ 1/2.

We say that a language L is in PCP(r(n), q(n)) if L has a (c · r(n), d · q(n))-verifier for some
constants c, d.

Sometimes we consider verifiers for which the probability “1/2” is replaced by some other number,
called the soundness parameter.

Theorem 18.2 (PCP Theorem [?, ?])
NP = PCP(log n, 1).

Notes:

1. Without loss of generality, proofs checkable by an (r, q)-verifier contain at most q2r bits. The
verifier looks at only q places of the proof for any particular choice of its random coins, and
there are only 2r such choices. Any bit in the proof that is read with 0 probability (i.e., for
no choice of the random coins) can just be deleted.

Web draft 2007-01-08 22:03

DRAFT

p18.4 (348) 18.1. PCP AND LOCALLY TESTABLE PROOFS

2. The previous remark implies PCP(r(n), q(n)) ⊆ NTIME(2O(r(n))q(n)). The proofs check-
able by an (r(n), q(n)-verifier have size at most 2O(r(n))q(n). A nondeterministic machine
could guess the proof in 2O(r(n))q(n) time, and verify it deterministically by running the ver-
ifier for all 2O(r(n)) possible choices of its random coin tosses. If the verifier accepts for all
these possible coin tosses then the nondeterministic machine accepts.

As a special case, PCP(log n, 1) ⊆ NTIME(2O(log n)) = NP: this is the trivial direction of
the PCP Theorem.

3. The constant 1/2 in the soundness requirement of Definition 18.1 is arbitrary, in the sense
that changing it to any other positive constant smaller than 1 will not change the class of
languages defined. Indeed, a PCP verifier with soundness 1/2 that uses r coins and makes q
queries can be converted into a PCP verifier using cr coins and cq queries with soundness
2−c by just repeating its execution c times (see Exercise 1).

Example 18.3
To get a better sense for what a PCP proof system looks like, we sketch two nontrivial PCP
systems:

1. The language GNI of pairs of non-isomorphic graphs is in PCP(poly(n), 1). Say the input
for GNI is 〈G0, G1〉, where G0, G1 have both n nodes. The verifier expects π to contain, for
each labeled graph H with n nodes, a bit π[H] ∈ {0, 1} corresponding to whether H ≡ G0 or
H ≡ G1 (π[H] can be arbitrary if neither case holds). In other words, π is an (exponentially
long) array of bits indexed by the (adjacency matrix representations of) all possible n-vertex
graphs.

The verifier picks b ∈ {0, 1} at random and a random permutation. She applies the permuta-
tion to the vertices of Gb to obtain an isomorphic graph, H. She queries the corresponding
bit of π and accepts iff the bit is b.

If G0 6≡ G1, then clearly a proof π can be constructed which makes the verifier accept with
probability 1. If G1 ≡ G2, then the probability that any π makes the verifier accept is at
most 1/2.

2. The protocols in Chapter 8 can be used (see Exercise 5) to show that the permanent has
PCP proof system with polynomial randomness and queries. Once again, the length of the
proof will be exponential.

In fact, both of these results are a special case of the following theorem a “scaled-up” version
of the PCP Theorem which we will not prove.

Theorem 18.4 (Scaled-up PCP, [?, ?, ?])
PCP(poly, 1) = NEXP

Web draft 2007-01-08 22:03

DRAFT

18.2. PCP AND HARDNESS OF APPROXIMATION p18.5 (349)

18.2 PCP and Hardness of Approximation

The PCP Theorem implies that for many NP optimization problems, computing near-optimal
solutions is no easier than computing exact solutions.

We illustrate the notion of approximation algorithms with an example. MAX3SAT is the prob-
lem of finding, given a 3CNF Boolean formula ϕ as input, an assignment that maximizes the number
of satisfied clauses. This problem is of course NP-hard, because the corresponding decision prob-
lem, 3SAT, is NP-complete.

Definition 18.5
For every 3CNF formula ϕ, define val(ϕ) to be the maximum fraction of clauses that can be satisfied
by any assignment to ϕ’s variables. In particular, if ϕ is satisfiable then val(ϕ) = 1.

Let ρ ≤ 1. An algorithm A is a ρ-approximation algorithm for MAX3SAT if for every 3CNF
formula ϕ with m clauses, A(ϕ) outputs an assignment satisfying at least ρ · val(ϕ)m of ϕ’s clauses.

In many practical settings, obtaining an approximate solution to a problem may be almost as
good as solving it exactly. Moreover, for some computational problems, approximation is much
easier than an exact solution.

Example 18.6 (1/2-approximation for MAX3SAT)
We describe a polynomial-time algorithm that computes a 1/2-approximation for MAX3SAT. The
algorithm assigns values to the variables one by one in a greedy fashion, whereby the ith variable is
assigned the value that results in satisfying at least 1/2 the clauses in which it appears. Any clause
that gets satisfied is removed and not considered in assigning values to the remaining variables.
Clearly, the final assignment will satisfy at least 1/2 of all clauses, which is certainly at least half of
the maximum that the optimum assignment could satisfy.

Using semidefinite programming one can also design a polynomial-time (7/8−ε)-approximation
algorithm for every ε > 0 (see references). (Obtaining such a ratio is trivial if we restrict ourselves
to 3CNF formulae with three distinct variables in each clause. Then a random assignment has
probability 7/8 to satisfy it, and by linearity of expectation, is expected to satisfy a 7/8 fraction
of the clauses. This observation can be turned into a simple probabilistic or even deterministic
7/8-approximation algorithm.)

For a few problems, one can even design (1 − ε)-approximation algorithms for every ε > 0.
Exercise 10 asks you to show this for the NP-complete knapsack problem.

Researchers are extremely interested in finding the best possible approximation algorithms for
NP-hard optimization problems. Yet, until the early 1990’s most such questions were wide open. In
particular, we did not know whether MAX3SAT has a polynomial-time ρ-approximation algorithm
for every ρ < 1. The PCP Theorem has the following Corollary.

Corollary 18.7
There exists some constant ρ < 1 such that if there is a polynomial-time ρ-approximation algorithm
for MAX3SAT then P = NP.

Web draft 2007-01-08 22:03

DRAFT

p18.6 (350) 18.2. PCP AND HARDNESS OF APPROXIMATION

Later, in Chapter 19, we show a stronger PCP Theorem by H̊astad which implies that for
every ε > 0, if there is a polynomial-time (7/8+ε)-approximation algorithm for MAX3SAT then
P = NP. Hence the approximation algorithm for this problem mentioned in Example 18.6 is very
likely optimal. The PCP Theorem (and the other PCP theorems that followed it) imply a host
of such hardness of approximation results for many important problems, often showing that known
approximation algorithms are optimal.

18.2.1 Gap-producing reductions

To prove Corollary 18.7 for some fixed ρ < 1, it suffices to give a polynomial-time reduction f that
maps 3CNF formulae to 3CNF formulae such that:

ϕ ∈ 3SAT⇒ val(f(ϕ)) = 1 (1)
ϕ 6∈ L⇒ val(f(ϕ)) < ρ (2)

After all, if a ρ-approximation algorithm were to exist for MAX3SAT, then we could use it to
decide membership of any given formula ϕ in 3SAT by applying reduction f on ϕ and then running
the approximation algorithm on the resultant 3CNF formula f(ϕ). If val(f(ϕ) = 1, then the
approximation algorithm would return an assignment that satisfies at least ρ fraction of the clauses,
which by property (2) tells us that ϕ ∈ 3SAT.

Later (in Section 18.2) we show that the PCP Theorem is equivalent to the following Theorem:

Theorem 18.8
There exists some ρ < 1 and a polynomial-time reduction f satisfying (1) and (2).

By the discussion above, Theorem 18.8 implies Corollary 18.7 and so rules out a polynomial-time
ρ-approximation algorithm for MAX3SAT (unless P = NP).

Why doesn’t the Cook-Levin reduction suffice to prove Theorem 18.8? The first thing
one would try is the reduction from any NP language to 3SAT in the Cook-Levin Theorem (Theo-
rem 2.10). Unfortunately, it doesn’t give such an f because it does not satisfy property (2): we can
always satisfy almost all of the clauses in the formulae produced by the reduction (see Exercise 9
and also the “non-robustness” quote at the start of this chapter).

18.2.2 Gap problems

The above discussion motivates the definition of gap problems, a notion implicit in (1) and (2). It
is also an important concept in the proof of the PCP Theorem itself.

Definition 18.9 (GAP 3SAT)
Let ρ ∈ (0, 1). The ρ-GAP 3SAT problem is to determine, given a 3CNF formula ϕ whether:

• ϕ is satisfiable, in which case we say ϕ is a YES instance of ρ-GAP 3SAT.

• val(ϕ) ≤ ρ, in which case we say ϕ is a NO instance of ρ-GAP 3SAT.

Web draft 2007-01-08 22:03

DRAFT

18.2. PCP AND HARDNESS OF APPROXIMATION p18.7 (351)

An algorithm A is said to solve ρ-GAP 3SAT if A(ϕ) = 1 if ϕ is a YES instance of ρ-GAP 3SAT
and A(ϕ) = 0 if ϕ is a NO instance. Note that we do not make any requirement on A(ϕ) if ϕ is
neither a YES nor a NO instance of ρ-GAP qCSP.

Our earlier discussion of the desired reduction f can be formalized as follows.

Definition 18.10
Let ρ ∈ (0, 1). We say that ρ-GAP 3SAT is NP-hard if for every language L there is a polynomial-
time computable function f such that

x ∈ L⇒ f(x) is a YES instance of ρ-GAP 3SAT

x 6∈ L⇒ f(x) is a NO instance of ρ-GAP 3SAT

18.2.3 Constraint Satisfaction Problems

Now we generalize the definition of 3SAT to constraint satisfaction problems (CSP), which allow
clauses of arbitrary form (instead of just OR of literals) including those depending upon more than
3 variables. Sometimes the variables are allowed to be non-Boolean. CSPs arise in a variety of
application domains and play an important role in the proof of the PCP Theorem.

Definition 18.11
Let q,W be natural numbers. A qCSPW instance ϕ is a collection of functions ϕ1, . . . , ϕm (called
constraints) from {0..W−1}n to {0, 1} such that each function ϕi depends on at most q of its input
locations. That is, for every i ∈ [m] there exist j1, . . . , jq ∈ [n] and f : {0..W−1}q → {0, 1} such
that ϕi(u) = f(uj1 , . . . , ujq) for every u ∈ {0..W−1}n.

We say that an assignment u ∈ {0..W−1}n satisfies constraint ϕi if ϕi(u) = 1. The fraction of
constraints satisfied by u is

∑m
i=1 ϕi(u)

m , and we let val(ϕ) denote the maximum of this value over all
u ∈ {0..W−1}n. We say that ϕ is satisfiable if val(ϕ) = 1.

We call q the arity of ϕ and W the alphabet size. If W = 2 we say that ϕ uses a binary alphabet
and call ϕ a qCSP-instance (dropping the subscript 2).

Example 18.12
3SAT is the subcase of qCSPW where q = 3, W = 2, and the constraints are OR’s of the involved
literals.

Similarly, the NP-complete problem 3COL can be viewed as a subcase of 2CSP3 instances where
for each edge (i, j), there is a constraint on the variables ui, uj that is satisfied iff ui 6= uj . The
graph is 3-colorable iff there is a way to assign a number in {0, 1, 2} to each variable such that all
constraints are satisfied.

Notes:

Web draft 2007-01-08 22:03

DRAFT

p18.8 (352) 18.2. PCP AND HARDNESS OF APPROXIMATION

1. We define the size of a qCSPW -instance ϕ to be the number of constraints m it has. Because
variables not used by any constraints are redundant, we always assume n ≤ qm. Note that a
qCSPW instance over n variables with m constraints can be described using O(mnqW q) bits.
Usually q,W will be constants (independent of n,m).

2. As in the case of 3SAT, we can define maximization and gap problems for CSP instances.
In particular, for any ρ ∈ (0, 1), we define ρ-GAP qCSPW as the problem of distinguishing
between a qCSPW -instance ϕ that is satisfiable (called a YES instance) and an instance ϕ
with val(ϕ) ≤ ρ (called a NO instance). As before, we will drop the subscript W in the case
of a binary alphabet.

3. The simple greedy approximation algorithm for 3SAT can be generalized for the MAX qCSP
problem of maximizing the number of satisfied constraints in a given qCSP instance. That
is, for any qCSPW instance ϕ with m constraints, the algorithm will output an assignment
satisfying val(ϕ)

W q m constraints. Thus, unless NP ⊆ P, the problem 2−q-GAP qCSP is not NP
hard.

18.2.4 An Alternative Formulation of the PCP Theorem

We now show how the PCP Theorem is equivalent to the NP-hardness of a certain gap version of
qCSP. Later, we will refer to this equivalence as the “hardness of approximation viewpoint” of the
PCP Theorem.

Theorem 18.13 (PCP Theorem, alternative formulation)
There exist constants q ∈ N, ρ ∈ (0, 1) such that ρ-GAP qCSP is NP-hard.

We now show Theorem 18.13 is indeed equivalent to the PCP Theorem:

Theorem 18.2 implies Theorem 18.13. Assume that NP ⊆ PCP(log n, 1). We will show
that 1/2-GAP qCSP is NP-hard for some constant q. It is enough to reduce a single NP-complete
language such as 3SAT to 1/2-GAP qCSP for some constant q. Under our assumption, 3SAT has a
PCP system in which the verifier V makes a constant number of queries, which we denote by q,
and uses c log n random coins for some constant c. Given every input x and r ∈ {0, 1}c log n, define
Vx,r to be the function that on input a proof π outputs 1 if the verifier will accept the proof π on
input x and coins r. Note that Vx,r depends on at most q locations. Thus for every x ∈ {0, 1}n, the
collection ϕ = {Vx,r}r∈{0,1}c log n is a polynomial-sized qCSP instance. Furthermore, since V runs in
polynomial-time, the transformation of x to ϕ can also be carried out in polynomial-time. By the
completeness and soundness of the PCP system, if x ∈ 3SAT then ϕ will satisfy val(ϕ) = 1, while
if x 6∈ 3SAT then ϕ will satisfy val(ϕ) ≤ 1/2. �

Theorem 18.13 implies Theorem 18.2. Suppose that ρ-GAP qCSP is NP-hard for some con-
stants q,ρ < 1. Then this easily translates into a PCP system with q queries, ρ soundness and
logarithmic randomness for any language L: given an input x, the verifier will run the reduction
f(x) to obtain a qCSP instance ϕ = {ϕi}mi=1. It will expect the proof π to be an assignment to the

Web draft 2007-01-08 22:03

DRAFT

18.2. PCP AND HARDNESS OF APPROXIMATION p18.9 (353)

variables of ϕ, which it will verify by choosing a random i ∈ [m] and checking that ϕi is satisfied
(by making q queries). Clearly, if x ∈ L then the verifier will accept with probability 1, while if
x 6∈ L it will accept with probability at most ρ. The soundness can be boosted to 1/2 at the expense
of a constant factor in the randomness and number of queries (see Exercise 1). �

Remark 18.14
Since 3CNF formulas are a special case of 3CSP instances, Theorem 18.8 (ρ-GAP 3SAT is NP-hard)
implies Theorem 18.13 (ρ-GAP qCSP is NP-hard). Below we show Theorem 18.8 is also implied by
Theorem 18.13, concluding that it is also equivalent to the PCP Theorem.

It is worth while to review this very useful equivalence between the “proof view” and the
“hardness of approximation view” of the PCP Theorem:

PCP verifier (V) ←→ CSP instance (ϕ)
PCP proof (π) ←→ Assignment to variables (u)
Length of proof ←→ Number of variables (n)

Number of queries (q) ←→ Arity of constraints (q)
Number of random bits (r) ←→ Logarithm of number of constraints (logm)

Soundness parameter ←→ Maximum of val(ϕ) for a NO instance
Theorem 18.2 (NP ⊆ PCP(log n, 1)) ←→ Theorem 18.13 (ρ-GAP qCSP is NP-hard)

18.2.5 Hardness of Approximation for 3SAT and INDSET.

The CSP problem allows arbitrary functions to serve as constraints, which may seem somewhat
artificial. We now show how Theorem 18.13 implies hardness of approximation results for the more
natural problems of MAX3SAT (determining the maximum number of clauses satisfiable in a 3SAT
formula) and MAX INDSET (determining the size of the largest independent set in a given graph).

The following two lemmas use the PCP Theorem to show that unless P = NP, both MAX3SAT
and MAX INDSET are hard to approximate within a factor that is a constantless than 1. (Sec-
tion 18.3 proves an even stronger hardness of approximation result for INDSET.)

Lemma 18.15 (Theorem 18.8, restated)
There exists a constant 0 < ρ < 1 such that ρ-GAP 3SAT is NP-hard.

Lemma 18.16
There exist a polynomial-time computable transformation f from 3CNF formulae to graphs such
that for every 3CNF formula ϕ, f(ϕ) is an n-vertex graph whose largest independent set has size
val(ϕ)n

7 .

Proof of Lemma 18.15: Let ε > 0 and q ∈ N be such that by Theorem 18.13, (1−ε)-GAP qCSP
is NP-hard. We show a reduction from (1−ε)-GAP qCSP to (1−ε′)-GAP 3SAT where ε′ > 0 is
some constant depending on ε and q. That is, we will show a polynomial-time function mapping
YES instances of (1−ε)-GAP qCSP to YES instances of (1−ε′)-GAP 3SAT and NO instances of
(1−ε)-GAP qCSP to NO instances of (1−ε′)-GAP 3SAT.

Let ϕ be a qCSP instance over n variables with m constraints. Each constraint ϕi of ϕ can be
expressed as an AND of at most 2q clauses, where each clause is the OR of at most q variables

Web draft 2007-01-08 22:03

DRAFT

p18.10 (354) 18.2. PCP AND HARDNESS OF APPROXIMATION

or their negations. Let ϕ′ denote the collection of at most m2q clauses corresponding to all the
constraints of ϕ. If ϕ is a YES instance of (1−ε)-GAP qCSP (i.e., it is satisfiable) then there exists
an assignment satisfying all the clauses of ϕ′. if ϕ is a NO instance of (1−ε)-GAP qCSP then every
assignment violates at least an ε fraction of the constraints of ϕ and hence violates at least an ε

2q

fraction of the constraints of ϕ. We can use the Cook-Levin technique of Chapter 2 (Theorem 2.10),
to transform any clause C on q variables on u1, . . . , uq to a set C1, . . . , Cq of clauses over the variables
u1, . . . , uq and additional auxiliary variables y1, . . . , yq such that (1) each clause Ci is the OR of at
most three variables or their negations, (2) if u1, . . . , uq satisfy C then there is an assignment to
y1, . . . , yq such that u1, . . . , uq, y1, . . . , yq simultaneously satisfy C1, . . . , Cq and (3) if u1, . . . , uq does
not satisfy C then for every assignment to y1, . . . , yq, there is some clause Ci that is not satisfies
by u1, . . . , uq, y1, . . . , yq.

Let ϕ′′ denote the collection of at most qm2q clauses over the n+ qm variables obtained in this
way from ϕ′. Note that ϕ′′ is a 3SAT formula. Our reduction will map ϕ to ϕ′′. Completeness holds
since if ϕ was satisfiable then so will be ϕ′ and hence ϕ′′. Soundness holds since if every assignment
violates at least an ε fraction of the constraints of ϕ, then every assignment violates at least an ε

2q

fraction of the constraints of ϕ′, and so every assignment violates at least an ε
q2q fraction of the

constraints of ϕ′′. �

Proof of Lemma 18.16: Let ϕ be a 3CNF formula on n variables with m clauses. We define
a graph G of 7m vertices as follows: we associate a cluster of 7 vertices in G with each clause of
ϕ. The vertices in cluster associated with a clause C correspond to the 7 possible assignments to
the three variables C depends on (we call these partial assignments, since they only give values for
some of the variables). For example, if C is u2∨u5∨u7 then the 7 vertices in the cluster associated
with C correspond to all partial assignments of the form u1 = a, u2 = b, u3 = c for a binary vector
〈a, b, c〉 6= 〈1, 1, 1〉. (If C depends on less than three variables we treat one of them as repeated and
then some of the 7 vertices will correspond to the same assignment.) We put an edge between two
vertices of G if they correspond to inconsistent partial assignments. Two partial assignments are
consistent if they give the same value to all the variables they share. For example, the assignment
u1 = 1, u2 = 0, u3 = 0 is inconsistent with the assignment u3 = 1, u5 = 0, u7 = 1 because they share
a variable (u3) to which they give a different value. In addition, we put edges between every two
vertices that are in the same cluster.

Clearly transforming ϕ into G can be done in polynomial time. Denote by α(G) to be the
size of the largest independent set in G. We claim that α(G) = val(ϕ)m. For starters, note that
α(G) ≥ val(ϕ)m. Indeed, let u be the assignment that satisfies val(ϕ)m clauses. Define a set S as
follows: for each clause C satisfied by u, put in S the vertex in the cluster associated with C that
corresponds to the restriction of u to the variables C depends on. Because we only choose vertices
that correspond to restrictions of the assignment u, no two vertices of S correspond to inconsistent
assignments and hence S is an independent set of size val(ϕ)m.

Suppose that G has an independent set S of size k. We will use S to construct an assignment
u satisfying k clauses of ϕ, thus showing that val(ϕ)m ≥ α(G). We define u as follows: for every
i ∈ [n], if there is a vertex in S whose partial assignment gives a value a to ui, then set ui = a;
otherwise set ui = 0. This is well defined because S is an independent set, and each variable ui

can get at most a single value by assignments corresponding to vertices in S. On the other hand,
because we put all the edges within each cluster, S can contain at most a single vertex in each

Web draft 2007-01-08 22:03

DRAFT

18.3. N−δ-APPROXIMATION OF INDEPENDENT SET IS NP-HARD. p18.11 (355)

cluster, and hence there are k distinct cluster with members in S. By our definition of u it satisfies
all the clauses associated with these clusters. �

Remark 18.17
In Chapter 2, we defined L′ to be NP-hard if every L ∈ NP reduces to L′. The reduction
was a polynomial-time function f such that x ∈ L ⇔ f(x) ∈ L′. In all cases, we proved that
x ∈ L ⇒ f(x) ∈ L′ by showing a way to map a certificate to the fact that x ∈ L to a certificate
to the fact that x′ ∈ L′. Although the definition of a Karp reduction does not require that this
mapping is efficient, it often turned out that the proof did provide a way to compute this mapping
in polynomial time. The way we proved that f(x) ∈ L′ ⇒ x ∈ L was by showing a way to map a
certificate to the fact that x′ ∈ L′ to a certificate to the fact that x ∈ L. Once again, the proofs
typically yield an efficient way to compute this mapping.

A similar thing happens in the gap preserving reductions used in the proofs of Lemmas 18.15
and 18.16 and elsewhere in this chapter. When reducing from, say, ρ-GAP qCSP to ρ′-GAP 3SAT
we show a function f that maps a CSP instance ϕ to a 3SAT instance ψ satisfying the following
two properties:

Completeness We can map a satisfying assignment of ϕ to a satisfying assignment to ψ

Soundness Given any assignment that satisfies more than a ρ′ fraction of ψ’s clauses, we can map
it back into an assignment satisfying more than a ρ fraction of ϕ’s constraints.

18.3 n−δ-approximation of independent set is NP-hard.

We now show a much stronger hardness of approximation result for the independent set (INDSET)
problem than Lemma 18.16. Namely, we show that there exists a constant δ ∈ (0, 1) such that
unless P = NP, there is no polynomial-time nδ-approximation algorithm for INDSET. That is, we
show that if there is a polynomial-time algorithm A that given an n-vertex graph G outputs an
independent set of size at least opt

nδ (where opt is the size of the largest independent set in G) then
P = NP. We note that an even stronger result is known: the constant δ can be made arbitrarily
close to 1 [?, ?]. This factor is almost optimal since the independent set problem has a trivial
n-approximation algorithm: output a single vertex.

Our main tool will be the notion of expander graphs (see Note 18.18 and Chapter ??). Expander
graphs will also be used in the proof of PCP Theorem itself. We use here the following property
of expanders:

Lemma 18.19
Let G = (V,E) be a λ-expander graph for some λ ∈ (0, 1). Let S be a subset of V with |S| = β|V |
for some β ∈ (0, 1). Let (X1, . . . , X`) be a tuple of random variables denoting the vertices of a
uniformly chosen (`−1)-step path in G. Then,

(β − 2λ)k ≤ Pr[∀i∈[`]Xi ∈ S] ≤ (β + 2λ)k

The upper bound of Lemma 18.19 is implied by Theorem ??; we omit the proof of the lower
bound.

The hardness result for independent set follows by combining the following lemma with Lemma 18.16:

Web draft 2007-01-08 22:03

DRAFT

p18.12 (356) 18.3. N−δ-APPROXIMATION OF INDEPENDENT SET IS NP-HARD.

Note 18.18 (Expander graphs)
Expander graphs are described in Chapter ??. We define there a parameter
λ(G) ∈ [0, 1], for every regular graph G (see Definition 7.25). The main
property we need in this chapter is that for every regular graph G = (V,E)
and every S ⊆ V with |S| ≤ |V |/2,

Pr
(u,v)∈E

[u ∈ S, v ∈ S] ≤ |S|
|V |

(
1
2

+
λ(G)

2

)
(3)

Another property we use is that λ(G`) = λ(G)` for every ` ∈ N, where G` is
obtained by taking the adjacency matrix of G to the `th power (i.e., an edge
in G` corresponds to an (`−1)-step path in G).
For every c ∈ (0, 1), we call a regular graph G satisfying λ(G) ≤ c a c-
expander graph. If c < 0.9, we drop the prefix c and simply call G an
expander graph. (The choice of the constant 0.9 is arbitrary.) As shown
in Chapter ??, for every constant c ∈ (0, 1) there is a constant d and an
algorithm that given input n ∈ N , runs in poly(n) time and outputs the
adjacency matrix of an n-vertex d-regular c-expander (see Theorem 16.32).

Lemma 18.20
For every λ > 0 there is a polynomial-time computable reduction f that maps every n-vertex graph
G into an m-vertex graph H such that

(α̃(G)− 2λ)log n ≤ α̃(H) ≤ (α̃(G) + 2λ)log n

where α̃(G) is equal to the fractional size of the largest independent set in G.

Recall that Lemma 18.16 shows that there are some constants β, ε ∈ (0, 1) such that it is NP-
hard to tell whether a given graph G satisfies (1) α̃(G) ≥ β or (2) α̃(G) ≤ (1− ε)β. By applying
to G the reduction of Lemma 18.20 with parameter λ = βε/8 we get that in case (1), α̃(H) ≥
(β−βε/4)log n = (β(1−ε/4))log n, and in case (2), α̃(H) ≤ ((1−ε)β+βε/4)log n = (β(1−0.75ε))log n.
We get that the gap between the two cases is equal to clog n for some c > 1 which is equal to mδ

for some δ > 0 (where m = poly(n) is the number of vertices in H).

Proof of Lemma 18.20: Let G, λ be as in the lemma’s statement. We let K be an n-vertex
λ-expander of degree d (we can obtain such a graph in polynomial-time, see Note 18.18). We will
map G into a graph H of ndlog n−1 vertices in the following way:

• The vertices of H correspond to all the (log n−1)-step paths in the λ-expander K.

• We put an edge between two vertices u, v of H corresponding to the paths 〈u1, . . . , ulog n〉 and
〈v1, . . . , vlog n〉 if there exists an edge inG between two vertices in the set {u1, . . . , ulog n, v1, . . . , vlog n}.

Web draft 2007-01-08 22:03

DRAFT

18.4. NP ⊆ PCP(POLY(N), 1): PCP BASED UPON WALSH-HADAMARD CODEp18.13 (357)

A subset T of H’s vertices corresponds to a subset of log n-tuples of numbers in [n], which we
can identify as tuples of vertices in G. We let V (T) denote the set of all the vertices appearing in
one of the tuples of T . Note that in this notation, T is an independent set in H if and only if V (T)
is an independent set of G. Thus for every independent set T in H, we have that |V (T)| ≤ α̃(G)n
and hence by the upper bound of Lemma 18.19, T takes up less than an (α̃(H) + 2λ)log n fraction
of H’s vertices. On the other hand, if we let S be the independent set of G of size α̃(G)n then by
the lower bound of Lemma 18.19, an (α̃− 2λ)log n fraction of H’s vertices correspond to paths fully
contained in S, implying that α̃(H) ≥ (α̃(G)− 2λ)log n. �

18.4 NP ⊆ PCP(poly(n), 1): PCP based upon Walsh-Hadamard
code

We now prove a weaker version of the PCP theorem, showing that every NP statement has an
exponentially-long proof that can be locally tested by only looking at a constant number of bits. In
addition to giving a taste of how one proves PCP Theorems, this section builds up to a stronger
Corollary 18.26, which will be used in the proof of the PCP theorem.

Theorem 18.21
NP ⊆ PCP(poly(n), 1)

We prove this theorem by designing an appropriate verifier for an NP-complete language. The
verifier expects the proof to contain an encoded version of the usual certificate. The verifier checks
such an encoded certificate by simple probabilistic tests.

18.4.1 Tool: Linearity Testing and the Walsh-Hadamard Code

We use the Walsh-Hadamard code (see Section 17.5, though the treatment here is self-contained).
It is a way to encode bit strings of length n by linear functions in n variables over GF(2); namely,
the function WH : {0, 1}∗ → {0, 1}∗ mapping a string u ∈ {0, 1}n to the truth table of the function
x 7→ u � x, where for x,y ∈ {0, 1}n we define x � y =

∑n
i=1 xiyi (mod 2). Note that this is a

very inefficient encoding method: an n-bit string u ∈ {0, 1}n is encoded using |WH(u)| = 2n bits.
If f ∈ {0, 1}2

n

is equal to WH(u) for some u then we say that f is a Walsh-Hadamard codeword.
Such a string f ∈ {0, 1}2

n

can also be viewed as a function from {0, 1}n to {0, 1}.
The Walsh-Hadamard code is an error correcting code with minimum distance 1/2, by which we

mean that for every u 6= u′ ∈ {0, 1}n, the encodings WH(u) and WH(u) differ in half the bits. This
follows from the familiar random subsum principle (Claim A.5) since exactly half of the strings
x ∈ {0, 1}n satisfy u � x 6= u′ � x. Now we talk about local tests for the Walsh-Hadamard code
(i.e., tests making only O(1) queries).

Local testing of Walsh-Hadamard code. Suppose we are given access to a function f :
{0, 1}n → {0, 1} and want to test whether or not f is actually a codeword of Walsh-Hadamard.
Since the Walsh-Hadamard codewords are precisely the set of all linear functions from {0, 1}n to

Web draft 2007-01-08 22:03

DRAFT

p18.14 (358)18.4. NP ⊆ PCP(POLY(N), 1): PCP BASED UPON WALSH-HADAMARD CODE

{0, 1}, we can test f by checking that

f(x + y) = f(x) + f(y) (4)

for all the 22n pairs x,y ∈ {0, 1}n (where “+” on the left side of (pcp:eq:lintest) denotes vector
addition over GF(2)n and on the right side denotes addition over GF(2)).

But can we test f by querying it in only a constant number of places? Clearly, if f is not linear
but very close to being a linear function (e.g., if f is obtained by modifying a linear function on
a very small fraction of its inputs) then such a local test will not be able to distinguish f from a
linear function. Thus we set our goal on a test that on one hand accepts every linear function, and
on the other hand rejects with high probability every function that is far from linear. It turns out
that the natural test of choosing x,y at random and verifying (4) achieves this goal:

Definition 18.22
Let ρ ∈ [0, 1]. We say that f, g : {0, 1}n → {0, 1} are ρ-close if Prx∈R{0,1}n [f(x) = g(x)] ≥ ρ. We
say that f is ρ-close to a linear function if there exists a linear function g such that f and g are
ρ-close.

Theorem 18.23 (Linearity Testing [?])
Let f : {0, 1}n → {0, 1} be such that

Pr
x,y∈R{0,1}n

[f(x + y) = f(x) + f(y)] ≥ ρ

for some ρ > 1/2. Then f is ρ-close to a linear function.

We defer the proof of Theorem 18.23 to Section 19.3 of the next chapter. For every δ ∈ (0, 1/2),
we can obtain a linearity test that rejects with probability at least 1/2 every function that is not
(1−δ)-close to a linear function, by testing Condition (4) repeatedly O(1/δ) times with independent
randomness. We call such a test a (1−δ)-linearity test.

Local decoding of Walsh-Hadamard code. Suppose that for δ < 1
4 the function f : {0, 1}n →

{0, 1} is (1−δ)-close to some linear function f̃ . Because every two linear functions differ on half of
their inputs, the function f̃ is uniquely determined by f . Suppose we are given x ∈ {0, 1}n and
random access to f . Can we obtain the value f̃(x) using only a constant number of queries? The
naive answer is that since most x’s satisfy f(x) = f̃(x), we should be able to learn f̃(x) with good
probability by making only the single query x to f . The problem is that x could very well be one of
the places where f and f̃ differ. Fortunately, there is still a simple way to learn f̃(x) while making
only two queries to f :

1. Choose x′ ∈R {0, 1}n.

2. Set x′′ = x + x′.

3. Let y′ = f(x′) and y′′ = f(x′′).

4. Output y′ + y′′.

Web draft 2007-01-08 22:03

DRAFT

18.4. NP ⊆ PCP(POLY(N), 1): PCP BASED UPON WALSH-HADAMARD CODEp18.15 (359)

Since both x′ and x′′ are individually uniformly distributed (even though they are dependent),
by the union bound with probability at least 1 − 2δ we have y′ = f̃(x′) and y′′ = f̃(x′′). Yet by
the linearity of f̃ , f̃(x) = f̃(x′ + x′′) = f̃(x′) + f̃(x′′), and hence with at least 1 − 2δ probability
f̃(x) = y′+y′′.3 This technique is called local decoding of the Walsh-Hadamard code since it allows
to recover any bit of the correct codeword (the linear function f̃) from a corrupted version (the
function f) while making only a constant number of queries. It is also known as self correction of
the Walsh-Hadamard code.

18.4.2 Proof of Theorem 18.21

We will show a (poly(n), 1)-verifier proof system for a particular NP-complete language L. The
result that NP ⊆ PCP(poly(n), 1) follows since every NP language is reducible to L. The NP-
complete language L we use is QUADEQ, the language of systems of quadratic equations over
GF(2) = {0, 1} that are satisfiable.

Example 18.24
The following is an instance of QUADEQ over the variables u1, . . . , u5:

u1u2 + u3u4 + u1u5 = 1
u2u3 + u1u4 = 0

u1u4 + u3u5 + u3u4 = 1

This instance is satisfiable since the all-1 assignment satisfies all the equations.

More generally, an instance of QUADEQ over the variables u1, . . . , un is of the form AU = b,
where U is the n2-dimensional vector whose 〈i, j〉th entry is uiuj , A is an m × n2 matrix and
b ∈ {0, 1}m. In other words, U is the tensor product u ⊗ u, where x ⊗ y for a pair of vectors
x,y ∈ {0, 1}n denotes the n2-dimensional vector (or n × n matrix) whose (i, j) entry is xiyj . For
every i, j ∈ [n] with i ≤ j, the entry Ak,〈i,j〉 is the coefficient of uiuj in the kth equation (we identify
[n2] with [n] × [n] in some canonical way). The vector b consists of the right hand side of the m
equations. Since ui = (ui)2 in GF(2), we can assume the equations do not contain terms of the
form u2

i .
Thus a satisfying assignment consists of u1, u2, . . . , un ∈ GF(2) such that its tensor product

U = u⊗ u satisfies AU = b. We leave it as Exercise 12 to show that QUADEQ, the language of all
satisfiable instances, is indeed NP-complete.

We now describe the PCP system for QUADEQ. Let A,b be an instance of QUADEQ and
suppose that A,b is satisfiable by an assignment u ∈ {0, 1}n. The correct PCP proof π for A, b
will consist of the Walsh-Hadamard encoding for u and the Walsh-Hadamard encoding for u⊗ u,
by which we mean that we will design the PCP verifier in a way ensuring that it accepts proofs

3We use here the fact that over GF(2), a+ b = a− b.

Web draft 2007-01-08 22:03

DRAFT

p18.16 (360)18.4. NP ⊆ PCP(POLY(N), 1): PCP BASED UPON WALSH-HADAMARD CODE

WH(u) WH(uOu)x

Figure 18.2: The PCP proof that a set of quadratic equations is satisfiable consists of WH(u) and WH(u⊗ u) for
some vector u. The verifier first checks that the proof is close to having this form, and then uses the local decoder of
the Walsh-Hadamard code to ensure that u is a solution for the quadratic equation instance.

of this form with probability one, satisfying the completeness condition. (Note that π is of length
2n + 2n2

.)
Below, we repeatedly use the following fact:

random subsum principle: If u 6= v then for at least 1/2 the choices of x, u�x 6= v�x. Realize
that x can be viewed as a random subset of indices in [1, . . . , n] and the principle says that with
probability 1/2 the sum of the ui’s over this index set is different from the corresponding sum of vi’s.

The verifier. The verifier V gets access to a proof π ∈ {0, 1}2
n+2n2

, which we interpret as a pair
of functions f : {0, 1}n → {0, 1} and g : {0, 1}n

2

→ {0, 1}.

Step 1: Check that f , g are linear functions.

As already noted, this isn’t something that the verifier can check per se using local tests. Instead,
the verifier performs a 0.99-linearity test on both f, g, and rejects the proof at once if either test
fails.

Thus, if either of f, g is not 0.99-close to a linear function, then V rejects with high probability.
Therefore for the rest of the procedure we can assume that there exist two linear functions f̃ :
{0, 1}n → {0, 1} and g̃ : {0, 1}n

2

→ {0, 1} such that f̃ is 0.99-close to f , and g̃ is 0.99-close to g.
(Note: in a correct proof, the tests succeed with probability 1 and f̃ = f and g̃ = g.)

In fact, we will assume that for Steps 2 and 3, the verifier can query f̃ , g̃ at any desired point.
The reason is that local decoding allows the verifier to recover any desired value of f̃ , g̃ with good
probability, and Steps 2 and 3 will only use a small (less than 15) number of queries to f̃ , g̃. Thus
with high probability (say > 0.9) local decoding will succeed on all these queries.

notation: To simplify notation in the rest of the procedure we use f, g for f̃ , g̃ respectively.
Furthermore, we assume both f and g are linear, and thus they must encode some strings u ∈ {0, 1}n

and w ∈ {0, 1}n
2

. In other words, f, g are the functions given by f(r) = u� r and g(z) = w � z.

Step 2: Verify that g encodes u⊗ u, where u ∈ {0, 1}n is the string encoded by f .
Verifier V does the following test 3 times: “Choose r, r′ independently at random from {0, 1}n,

and if f(r)f(r′) 6= g(r⊗ r′) then halt and reject.”
In a correct proof, w = u⊗ u, so

f(r)f(r′) =

∑
i∈[n]

uiri

 ∑
j∈[n]

ujr
′
j

 =

∑
i,j∈[n]

uiujrir
′
j = (u⊗ u)� (r⊗ r′),

Web draft 2007-01-08 22:03

DRAFT

18.4. NP ⊆ PCP(POLY(N), 1): PCP BASED UPON WALSH-HADAMARD CODEp18.17 (361)

which in the correct proof is equal to g(r⊗ r′). Thus Step 2 never rejects a correct proof.
Suppose now that, unlike the case of the correct proof, w 6= u⊗u. We claim that in each of the

three trials V will halt and reject with probability at least 1
4 . (Thus the probability of rejecting in

at least one trial is at least 1− (3/4)3 = 37/64.) Indeed, let W be an n× n matrix with the same
entries as w, let U be the n× n matrix such that Ui,j = uiuj and think of r as a row vector and r′

as a column vector. In this notation,

g(r⊗ r′) = w � (r⊗ r′) =
∑

i,j∈[n]

wi,jrir
′
j = rWr′

f(r)f(r′) = (u� r)(u� r′) = (
n∑

i=1

uiri)(
n∑

j=1

ujr
′
j) =

∑
i,j∈[n]

uiujrirj = rUr′

And V rejects if rWr′ 6= rUr′. The random subsum principle implies that if W 6= U then at
least 1/2 of all r satisfy rW 6= rU . Applying the random subsum principle for each such r, we
conclude that at least 1/2 the r′ satisfy rWr′ 6= rUr′. We conclude that the test rejects for at least
1/4 of all pairs r, r′.

Step 3: Verify that f encodes a satisfying assignment.
Using all that has been verified about f, g in the previous two steps, it is easy to check that any

particular equation, say the kth equation of the input, is satisfied by u, namely,∑
i,j

Ak,(i,j)uiuj = bk. (5)

Denoting by z the n2 dimensional vector (Ak,(i,j)) (where i, j vary over [1..n]), we see that the
left hand side is nothing but g(z). Since the verifier knows Ak,(i,j) and bk, it simply queries g at z
and checks that g(z) = bk.

The drawback of the above idea is that in order to check that u satisfies the entire system,
the verifier needs to make a query to g for each k = 1, 2, . . . ,m, whereas the number of queries is
required to be independent of m. Luckily, we can use the random subsum principle again! The
verifier takes a random subset of the equations and computes their sum mod 2. (In other words,
for k = 1, 2, . . . ,m multiply the equation in (5) by a random bit and take the sum.) This sum is a
new quadratic equation, and the random subsum principle implies that if u does not satisfy even
one equation in the original system, then with probability at least 1/2 it will not satisfy this new
equation. The verifier checks that u satisfies this new equation.

(Actually, the above test has to be repeated twice to ensure that if u does not satisfy the system,
then Step 3 rejects with probability at least 3/4.)

18.4.3 PCP’s of proximity

Theorem 18.21 says that (exponential-sized) certificates for NP languages can be checked by ex-
amining only O(1) bits in them. The proof actually yields a somewhat stronger result, which will
be used in the proof of the PCP Theorem. This concerns the following scenario: we hold a circuit
C in our hands that has n input wires. Somebody holds a satisfying assignment u. He writes down
WH(u) as well as another string π for us. We do a probabilistic test on this by examining O(1) bits
in these strings, and at the end we are convinced of this fact.

Web draft 2007-01-08 22:03

DRAFT

p18.18 (362)18.4. NP ⊆ PCP(POLY(N), 1): PCP BASED UPON WALSH-HADAMARD CODE

Concatenation test. First we need to point out a property of Walsh-Hadamard codes and a
related concatenation test. In this setting, we are given two linear functions f, g that encode strings
of lengths n and n+m respectively. We have to check by examining only O(1) bits in f, g that if
u and v are the strings encoded by f, g (that is, f = WH(u) and h = WH(v)) then u is the same
as the first n bits of v. By the random subsum principle, the following simple test rejects with
probability 1/2 if this is not the case. Pick a random x ∈ {0, 1}n, and denote by X ∈ GF(2)m+n

the string whose first n bits are x and the remaining bits are all-0. Verify that f(X) = g(x).
With this test in hand, we can prove the following corollary.

Corollary 18.25 (Exponential-sized PCP of proximity.)
There exists a verifier V that given any circuit C of size m and with n inputs has the following
property:

1. If u ∈ {0, 1}n is a satisfying assignment for circuit C, then there is a string π2 of size 2poly(m)

such that V accepts WH(u) ◦ π2 with probability 1. (Here ◦ denotes concatenation.)

2. For every strings π1, π2 ∈ {0, 1}∗, where π1 has 2n bits, if V accepts π1 ◦ π2 with probability
at least 1/2, then π1 is 0.99-close to WH(u) for some u that satisfies C.

3. V uses poly(m) random bits and examines only O(1) bits in the provided strings.

Proof: One looks at the proof of NP-completeness of QUADEQ to realize that given circuit C
with n input wires and size m, it yields an instance of QUADEQ of size O(m) such that u ∈ {0, 1}n
satisfies the circuit iff there is a string v of size M = O(m) such that u ◦ v satisfies the instance of
QUADEQ. (Note that we are thinking of u both as a string of bits that is an input to C and as a
string over GF(2)n that is a partial assignment to the variables in the instance of QUADEQ.)

The verifier expects π2 to contain whatever our verifier of Theorem 18.21 expects in the proof for
this instance of QUADEQ, namely, a linear function f that is WH(w), and another linear function
g that is WH(w ⊗ w) where w satisfies the QUADEQ instance. The verifier checks these functions
as described in the proof of Theorem 18.21.

However, in the current setting our verifer is also given a string π1 ∈ {0, 1}2
n

. Think of this as
a function h :GF(2)n → GF(2). The verifier checks that h is 0.99-close to a linear function, say h̃.
Then to check that f̃ encodes a string whose first n bits are the same as the string encoded by h̃,
the verifier does a concatenation test.

Clearly, the verifier only reads O(1) bits overall. �

The following Corollary is also similarly proven and is the one that will actually be used later.
It concerns a similar situation as above, except the inputs to the circuit C are thought of as the
concatenation of two strings of lengths n1, n2 respectively where n = n1 + n2.

Corollary 18.26 (PCP of proximity when assignment is in two pieces)
There exists a verifier V that given any circuit C with n input wires and size m and also two
numbers n1, n2 such that n1 + n2 = n has the following property:

1. If u1 ∈ {0, 1}n1 ,u2 ∈ {0, 1}n2 is such that u1 ◦ u2 is a satisfying assignment for circuit C,

then there is a string π3 of size 2poly(m) such that V accepts WH(u1) ◦WH(u2) ◦ π3 with
probability 1.

Web draft 2007-01-08 22:03

DRAFT

18.5. PROOF OF THE PCP THEOREM. p18.19 (363)

2. For every strings π1, π2, π3 ∈ {0, 1}∗, where π1 and π2 have 2n1 and 2n2 bits respectively, if
V accepts π1 ◦ π2 ◦ π3 with probability at least 1/2, then π1, π2 are 0.99-close to WH(u1),
WH(u2) respectively for some u1,u2 such that u1 ◦ u2 is a satisfying assignment for circuit
C.

3. V uses poly(m) random bits and examines only O(1) bits in the provided strings.

18.5 Proof of the PCP Theorem.

As we have seen, the PCP Theorem is equivalent to Theorem 18.13, stating that ρ-GAP qCSP is
NP-hard for some constants q and ρ < 1. Consider the case that ρ = 1−ε where ε is not necessarily
a constant but can be a function of m (the number of constraints). Since the number of satisfied
constraints is always a whole number, if ϕ is unsatisfiable then val(ϕ) ≤ 1− 1/m. Hence, the gap
problem (1−1/m)-GAP 3CSP is a generalization of 3SAT and is NP hard. The idea behind the
proof is to start with this observation, and iteratively show that (1−ε)-GAP qCSP is NP-hard for
larger and larger values of ε, until ε is as large as some absolute constant independent of m. This
is formalized in the following lemma.

Definition 18.27
Let f be a function mapping CSP instances to CSP instances. We say that f is a CL-reduction
(short for complete linear-blowup reduction) if it is polynomial-time computable and for every CSP
instance ϕ with m constraints, satisfies:

Completeness: If ϕ is satisfiable then so is f(ϕ).

Linear blowup: The new qCSP instance f(ϕ) has at most Cm constraints and alphabet W ,
where C and W can depend on the arity and the alphabet size of ϕ (but not on the number
of constraints or variables).

Lemma 18.28 (PCP Main Lemma)
There exist constants q0 ≥ 3, ε0 > 0, and a CL-reduction f such that for every q0CSP-instance ϕ
with binary alphabet, and every ε < ε0, the instance ψ = f(ϕ) is a q0CSP (over binary alphabet)
satisfying

val(ϕ) ≤ 1− ε⇒ val(ψ) ≤ 1− 2ε

Lemma 18.28 can be succinctly described as follows:

Arity Alphabet Constraints Value
Original q0 binary m 1− ε

⇓ ⇓ ⇓ ⇓
Lemma 18.28 q0 binary Cm 1− 2ε

This Lemma allows us to easily prove the PCP Theorem.

Web draft 2007-01-08 22:03

DRAFT

p18.20 (364) 18.5. PROOF OF THE PCP THEOREM.

Proving Theorem 18.2 from Lemma 18.28. Let q0 ≥ 3 be as stated in Lemma 18.28. As
already observed, the decision problem q0CSP is NP-hard. To prove the PCP Theorem we give
a reduction from this problem to GAP q0CSP. Let ϕ be a q0CSP instance. Let m be the number
of constraints in ϕ. If ϕ is satisfiable then val(ϕ) = 1 and otherwise val(ϕ) ≤ 1 − 1/m. We use
Lemma 18.28 to amplify this gap. Specifically, apply the function f obtained by Lemma 18.28 to
ϕ a total of logm times. We get an instance ψ such that if ϕ is satisfiable then so is ψ, but if ϕ
is not satisfiable (and so val(ϕ) ≤ 1 − 1/m) then val(ψ) ≤ 1 − min{2ε0, 1 − 2log m/m} = 1 − 2ε0.
Note that the size of ψ is at most C log mm, which is polynomial in m. Thus we have obtained
a gap-preserving reduction from L to the (1−2ε0)-GAP q0CSP problem, and the PCP theorem is
proved. �

The rest of this section proves Lemma 18.28 by combining two transformations: the first trans-
formation amplifies the gap (i.e., fraction of violated constraints) of a given CSP instance, at the
expense of increasing the alphabet size. The second transformation reduces back the alphabet to
binary, at the expense of a modest reduction in the gap. The transformations are described in the
next two lemmas.

Lemma 18.29 (Gap Amplification [?])
For every ` ∈ N, there exists a CL-reduction g` such that for every CSP instance ϕ with binary
alphabet, the instance ψ = g`(ϕ) has has arity only 2 (but over a non-binary alphabet) and satisfies:

val(ϕ) ≤ 1− ε⇒ val(ψ) ≤ 1− `ε

for every ε < ε0 where ε0 > 0 is a number depending only on ` and the arity q of the original
instance ϕ.

Lemma 18.30 (Alphabet Reduction)
There exists a constant q0 and a CL- reduction h such that for every CSP instance ϕ, if ϕ had
arity two over a (possibly non-binary) alphabet {0..W−1} then ψ = h(ϕ) has arity q0 over a binary
alphabet and satisfies:

val(ϕ) ≤ 1− ε⇒ val(h(ϕ)) ≤ 1− ε/3

Lemmas 18.29 and 18.30 together imply Lemma 18.28 by setting f(ϕ) = h(g6(ϕ)). Indeed, if
ϕ was satisfiable then so will f(ϕ). If val(ϕ) ≤ 1 − ε, for ε < ε0 (where ε0 the value obtained in
Lemma 18.29 for ` = 6, q = q0) then val(g6(ϕ)) ≤ 1 − 6ε and hence val(h(g6(ϕ))) ≤ 1 − 2ε. This
composition is described in the following table:

Arity Alphabet Constraints Value
Original q0 binary m 1− ε

⇓ ⇓ ⇓ ⇓
Lemma 18.29 2 W Cm 1− 6ε

⇓ ⇓ ⇓ ⇓
Lemma 18.30 q0 binary C ′Cm 1− 2ε

Web draft 2007-01-08 22:03

DRAFT

18.5. PROOF OF THE PCP THEOREM. p18.21 (365)

18.5.1 Gap Amplification: Proof of Lemma 18.29

To prove Lemma 18.29, we need to exhibit a function g that maps a qCSP instance to a 2CSPW

instance over a larger alphabet {0..W−1} in a way that increases the fraction of violated constraints.
We will show that we may assume without loss of generality that the instance of qCSP has a

specific form. To describe this we need a definition.
We will assume that the instance satisfies the following properties, since we can give a simple

CL-reduction from qCSP to this special type of qCSP. (See the “Technical Notes” section at the
end of the chapter.) We will call such instances “nice.”

Property 1: The arity q is 2 (though the alphabet may be nonbinary).

Property 2: Let the constraint graph of ψ be the graph G with vertex set [n] where for every
constraint of ϕ depending on the variables ui, uj , the graph G has the edge (i, j). We allow G
to have parallel edges and self-loops. Then G is d-regular for some constant d (independent
of the alphabet size) and at every node, half the edges incident to it are self-loops.

Property 3: The constraint graph is an expander.

The rest of the proof consists of a “powering” operation for nice 2CSP instances. This is
described in the following Lemma.

Lemma 18.31 (Powering)
Let ψ be a 2CSPW instance satisfying Properties 1 through 3. For every number t, there is an
instance of 2CSP ψt such that:

1. ψt is a 2CSPW ′-instance with alphabet size W ′ < W d5t
, where d denote the degree of ψ’s

constraint graph. The instance ψt has dt+
√

tn constraints, where n is the number of variables
in ψ.

2. If ψ is satisfiable then so is ψt.

3. For every ε < 1
d
√

t
, if val(ψ) ≤ 1− ε then val(ψt) ≤ 1− ε′ for ε′ =

√
t

105dW 4 ε.

4. The formula ψt is computable from ψ in time polynomial in m and W dt
.

Proof: Let ψ be a 2CSPW -instance with n variables and m = nd constraints, and as before let G
denote the constraint graph of ψ.

The formula ψt will have the same number of variables as ψ. The new variables y = y1, . . . , yn

take values over an alphabet of size W ′ = W d5t
, and thus a value of a new variable yi is a d5t-tuple

of values in {0..W−1}. We will think of this tuple as giving a value in {0..W−1} to every old variable
uj where j can be reached from ui using a path of at most t +

√
t steps in G (see Figure 18.3).

In other words, the tuple contains an assignment for every uj such that j is in the ball of radius
t+
√
t and center i in G. For this reason, we will often think of an assignment to yi as “claiming” a

certain value for uj . (Of course, another variable yk could claim a different value for uj .) Note that
since G has degree d, the size of each such ball is no more than dt+

√
t+1 and hence this information

can indeed be encoded using an alphabet of size W ′.

Web draft 2007-01-08 22:03

DRAFT

p18.22 (366) 18.5. PROOF OF THE PCP THEOREM.

k

k’i

t+t 1/2

t+t 1/2t+t 1/2

Figure 18.3: An assignment to the formula ψt consists of n variables over an alphabet of size less than W d5t

, where
each variable encodes the restriction of an assignment of ψ to the variables that are in some ball of radius t+

√
t in

ψ’s constraint graph. Note that an assignment y1, . . . , yn to ψt may be inconsistent in the sense that if i falls in the
intersection of two such balls centered at k and k′, then yk may claim a different value for ui than the value claimed
by yk′ .

For every (2t+1)-step path p = 〈i1, . . . , i2t+2〉 in G, we have one corresponding constraint Cp in
ψt (see Figure 18.4). The constraint Cp depends on the variables yi1 and yi2t+1 and outputs False
if (and only if) there is some j ∈ [2t+ 1] such that:

1. ij is in the t+
√
t-radius ball around i1.

2. ij+1 is in the t+
√
t-radius ball around i2t+2

3. If w denotes the value yi1 claims for uij and w′ denotes the value yi2t+2 claims for uij+1 , then
the pair (w,w′) violates the constraint in ϕ that depends on uij and uij+1 .

t+
t1

/2

t
t

2t+1

t+t 1/2

i

k
i’

k’

Figure 18.4: ψt has one constraint for every path of length 2t+ 1 in ψ’s constraint graph, checking that the views
of the balls centered on the path’s two endpoints are consistent with one another and the constraints of ψ.

A few observations are in order. First, the time to produce such an assignment is polynomial
in m and W dt

, so part 4 of Lemma 18.29 is trivial.

Web draft 2007-01-08 22:03

DRAFT

18.5. PROOF OF THE PCP THEOREM. p18.23 (367)

Second, for every assignment to u1, u2, . . . , un we can “lift” it to a canonical assignment to
y1, . . . , yn by simply assigning to each yi the vector of values assumed by uj ’s that lie in a ball of
radius t +

√
t and center i in G. If the assignment to the uj ’s was a satisfying assignment for ψ,

then this canonical assignment satisfies ψt, since it will satisfy all constraints encountered in walks
of length 2t+ 1 in G. Thus part 2 of Lemma 18.29 is also trivial.

This leaves part 3 of the Lemma, the most difficult part. We have to show that if val(ψ) ≤ 1− ε
then every assignment to the yi’s satisfies at most 1− ε′ fraction of constraints in ψt, where ε < 1

d
√

t

and ε′ =
√

t
105dW 4 ε. This is tricky since an assignment to the yi’s does not correspond to any obvious

assignment for the ui’s: for each uj , different values could be claimed for it by different yi’s. The
intuition will be to show that these inconsistencies among the yi’s can’t happen too often (at least
if the assignment to the yi’s satisfies 1− ε′ constraints in ψt).

From now on, let us fix some arbitrary assignment y = y1, . . . , yn to ψt’s variables. The following
notion is key.

The plurality assignment: For every variable ui of ψ, we define the random variable Zi over
{0, . . . ,W − 1} to be the result of the following process: starting from the vertex i, take a t step
random walk in G to reach a vertex k, and output the value that yk claims for ui. We let zi denote
the plurality (i.e., most likely) value of Zi. If more than one value is most likely, we break ties
arbitrarily. This assignment is called a plurality assignment (see Figure 18.5). Note that Zi = zi
with probability at least 1/W .

t+
t1

/2

t

i

k

Figure 18.5: An assignment y for ψt induces a plurality assignment u for ψ in the following way: ui gets the most
likely value that is claimed for it by yk, where k is obtained by taking a t-step random walk from i in the constraint
graph of ψ.

Since val(ψ) ≤ 1 − ε, every assignment for ψ fails to satisfy 1 − ε fraction of the constraints,
and this is therefore also true for the plurality assignment. Hence there exists a set F of εm = εnd
constraints in ψ that are violated by the assignment z = z1, . . . , zn. We will use this set F to show
that at least an ε′ fraction of ψt’s constraints are violated by the assignment y.

Why did we define the plurality assignment z in this way? The reason is illustrated by the
following claim, showing that for every edge f = (i, i′) of G, among all paths that contain the edge
f somewhere in their “midsection”, most paths are such that the endpoints of the path claim the
plurality values for ui and ui′ .

Web draft 2007-01-08 22:03

DRAFT

p18.24 (368) 18.5. PROOF OF THE PCP THEOREM.

Claim 18.32
For every edge f = (i, i′) in G define the event Bj,f over the set of (2t+1)-step paths in G to contain
all paths 〈i1, . . . , i2t+2〉 satisfying:

• f is the jth edge in the path. That is, f = (ij , ij+1).

• yi1 claims the plurality value for ui.

• yi2t+2 claims the plurality value for ui′ .

Let δ = 1
100W 2 . Then for every j ∈

{
t, . . . , t+ δ

√
t
}
, Pr[Bj,f] ≥ 1

nd2W 2 .

Proof: First, note that because G is regular, the jth edge of a random path is a random edge, and
hence the probability that f is the jth edge on the path is equal to 1

nd . Thus, we need to prove
that,

Pr[endpoints claim plurality values for ui, ui′ (resp.)|f is jth edge] ≥ 1
2W 2

(6)

We start with the case j = t+ 1. In this case (6) holds essentially by definition: the left-hand
side of (6) is equal to the probability that the event that the endpoints claim the plurality for these
variables happens for a path obtained by joining a random t-step path from i to a random t-step
path from i′. Let k be the endpoint of the first path and k′ be the endpoint of the second path. Let
Wi be the distribution of the value that yk claims for ui, where k is chosen as above, and similarly
define Wi′ to be the distribution of the value that yk′ claims for ui′ . Note that since k and k′ are
chosen independently, the random variables Wi and Wi′ are independent. Yet by definition the
distribution of Wi identical to the distribution Zi, while the distribution of Wi′ is identical to Zi′ .
Thus,

Pr[endpoints claim plurality values for ui, ui′ (resp.)|f is jth edge] =
Pr
k,k′

[Wi = zi ∧Wi′ = zi′] = Pr
k

[Wi = zi] Pr
k′

[Wi′ = zi′] ≥ 1
W 2

In the case that j 6= 2t+1 we need to consider the probability of the event that endpoints claim
the plurality values happening for a path obtained by joining a random t − 1 + j-step path from
i to a random t + 1 − j-step path from i′ (see Figure 18.6). Again we denote by k the endpoint
of the first path, and by k′ the endpoint of the second path, by Wi the value yk claims for ui

and by Wi′ the value yk′ claims for ui′ . As before, Wi and Wi′ are independent. However, this
time Wi and Zi may not be identically distributed. Fortunately, we can show that they are almost
identically distributed, in other words, the distributions are statistically close. Specifically, because
half of the constraints involving each variable are self loops, we can think of a t-step random walk
from a vertex i as follows: (1) throw t coins and let St denote the number of the coins that came
up “heads” (2) take St “real” (non self-loop) steps on the graph. Note that the endpoint of a
t-step random walk and a t′-step random walk will be identically distributed if in Step (1) the
variables St and St′ turn out to be the same number. Thus, the statistical distance of the endpoint
of a t-step random walk and a t′-step random walk is bounded by the statistical distance of St

and St′ where S` denotes the binomial distribution of the sum of ` balanced independent coins.

Web draft 2007-01-08 22:03

DRAFT

18.5. PROOF OF THE PCP THEOREM. p18.25 (369)

However, the distributions St and St+δ
√

t are within statistical distance at most 10δ for every δ, t
(see Exercise 15) and hence in our case Wi and Wi′ are 1

10W -close to Zi and Zi′ respectively. Thus
|Prk[Wi = zi] − Pr[Zi = zi]| < 1

10W , |Prk[Wi′ = zi′] − Pr[Zi′ = zi′]| < 1
10W which proves (6) also

for the case j 6= 2t+ 1. �

t+
t1

/2

t+εt1/2
t-εt1/2

2t+1

t+t 1/2

i

k
i’

k’

Figure 18.6: By definition, if we take two t-step random walks from two neighbors i and i′, then the respective
endpoints will claim the plurality assignments for ui and uj with probability more than 1/(2W 2). Because half
the edges of every vertex in G have self loops, this happens even if the walks are not of length t but of length in
[t− ε

√
t, t+

√
t] for sufficiently small ε.

Recall that F is the set of constraints of ψ (=edges in G) violated by the plurality assignment
z. Therefore, if f ∈ F and j ∈

{
t, . . . , t+ δ

√
t
}

then all the paths in Bj,f correspond to constraints
of ψt that are violated by the assignment y. Therefore, we might hope that the fraction of violated
constraints in ψt is at least the sum of Pr[Bj,f] for every f ∈ F and j ∈

{
t, . . . , t+ δ

√
t
}
. If this

were the case we’d be done since Claim 18.32 implies that this sum is at least δ
√

tεnd
2nW 2 = δ

√
tε

2W 2 > ε′.
However, this is inaaccurate since we are overcounting paths that contain more than one such
violation (i.e., paths which are in the intersection of Bj,f and Bj′,f ′ for (j, f) 6= (j′, f ′)). To bound
the effect of this overcounting we prove the following claim:

Claim 18.33
For every k ∈ N and set F of edges with |F | = εnd for ε < 1

kd ,∑
j,j′∈{t..t+k}

f,f ′∈F
(j,f) 6=(j′,f ′)

Pr[Bj,f ∩Bj,f ′] ≤ 30kdε (7)

Proof: Only one edge can be the jth edge of a path, and so for every f 6= f ′, Pr[Bj,f ∩Bj,f ′] = 0.
Thus the left-hand side of (7) simplifies to∑

j 6=j′∈{t..t+k}

∑
f 6=f ′

Pr[Bj,f ∩Bj′,f ′] (8)

Web draft 2007-01-08 22:03

DRAFT

p18.26 (370) 18.5. PROOF OF THE PCP THEOREM.

Let Aj be the event that the jth edge is in the set F . We get that (8) is equal to∑
j 6=j′∈{t..t+k}

Pr[Aj ∩Aj′] = 2
∑

j<j′∈{t..t+k}

Pr[Aj ∩Aj′] (9)

Let S be the set of at most dεn vertices that are adjacent to an edge in F . For j′ < j, Pr[Aj∩Aj′]
is bounded by the probability that a random (j′−j)-step path in G has both endpoints in S, or in
other words that a random edge in the graph Gj′−j has both endpoints in S. Using the fact that
λ(Gj′−j) = λ(G)j′−j ≤ 0.9j′−j , this probability is bounded by dε(dε + 0.9|j−j′|) (see Note 18.18).
Plugging this into (9) and using the formula for summation of arithmetic series, we get that:

2
∑

j<j′∈{t,...,t+k}

Pr[Aj ∩Aj′] ≤

2
∑

j∈{t,...,t+k}

t+k−j∑
i=1

dε(dε+ 0.9i) ≤

2k2d2ε2 + 2kdε
∞∑
i=1

0.9i ≤ 2k2d2ε2 + 20kdε ≤ 30kdε

where the last inequality follows from ε < 1
kd . �

Wrapping up. Claims 18.32 and 18.33 together imply that

∑
j∈{t..t+δ

√
t}

f∈F

Pr[Bj,f] ≥ δ
√
tε 1

2W 2 (10)

∑
j,j′∈{t..t+δ

√
t}

f,f ′∈F
(j,f) 6=(j′,f ′)

Pr[Bj,f ∩Bj′,f ′] ≤ 30δ
√
tdε (11)

But (10) and (11) together imply that if p is a random constraint of ψt then

Pr[p violated by y] ≥ Pr[
⋃

j∈{t..t+δ
√

t}
f∈F

Bj,f] ≥ δ
√
tε

240dW 2

where the last inequality is implied by the following technical claim:

Claim 18.34
Let A1, . . . , An be n subsets of some set U satisfying

∑
i<j |Ai∩Aj | ≤ C

∑n
i=1 |Ai| for some number

C ∈ N. Then, ∣∣∣∣∣
n⋃

i=1

Ai

∣∣∣∣∣ ≥
∑n

i=1 |Ai|
4C

Web draft 2007-01-08 22:03

DRAFT

18.5. PROOF OF THE PCP THEOREM. p18.27 (371)

Proof: We make 2C copies of every element u ∈ U to obtain a set Ũ with |Ũ | = 2C|U |. Now for
every subset Ai ⊆ U , we obtain Ãi ⊆ Ũ as follows: for every u ∈ Ai, we choose at random one of
the 2C copies to put in Ãi. Note that |Ãi| = |Ai|. For every i, j ∈ [n], u ∈ Ai ∩ Aj , we denote by
Ii,j,u the indicator random variable that is equal to 1 if we made the same choice for the copy of u
in Ãi and Ãj , and equal to 0 otherwise. Since E[Ii,j,u] = 1

2C ,

E
[
|Ãi ∩ Ãj |

]
=

∑
u∈Ai∩Aj

E[Ii,j,u] =
|Ai ∩Aj |

2C

and

E

∑
i<j

|Ãi ∩ Ãj |

 =

∑
i<j |Ai ∩Aj |

2C

This means that there exists some choice of Ã1, . . . , Ãj such that

n∑
i=1

|Ãi| =
n∑

i=1

|Ai| ≥ 2
∑
i<j

|Ãi ∩ Ãj |

which by the inclusion-exclusion principle (see Section ??) means that | ∪i Ãi| ≥ 1/2
∑

i |Ãi|. But
because there is a natural 2C-to-one mapping from ∪iÃi to ∪iAi we get that

| ∪n
i=1 Ai| ≥

| ∪n
i=1 Ãi|
2C

≥
∑n

i=1 |Ãi|
4C

=
∑n

i=1 |Ai|
4C

�

Since ε′ < δ
√

tε
240dW 2 , this proves the lemma. �

18.5.2 Alphabet Reduction: Proof of Lemma 18.30

Lemma 18.30 is actually a simple consequence of Corollary 18.26, once we restate it using our
“qCSP view” of PCP systems.

Corollary 18.35 (qCSP view of PCP of proximity.)
There exists positive integer q0 and an exponential-time transformation that given any circuit C of
size m and and n inputs and two numbers n1, n2 such that n1 + n2 = n produces an instance ψC

of q0CSP of size 2poly(m) over a binary alphabet such that:

1. The variables can be thought of as being partitioned into three sets π1, π2, π3 where π1 has
2n1 variables and π2 has 2n2 variables.

2. If u1 ∈ {0, 1}n1 ,u2 ∈ {0, 1}n2 is such that u1 ◦ u2 is a satisfying assignment for circuit C,

then there is a string π3 of size 2poly(m) such that WH(u1) ◦WH(u2) ◦ π3 satisfies ψC .

Web draft 2007-01-08 22:03

DRAFT

p18.28 (372) 18.5. PROOF OF THE PCP THEOREM.

3. For every strings π1, π2, π3 ∈ {0, 1}∗, where π1 and π2 have 2n1 and 2n2 bits respectively, if
π1 ◦ π2 ◦ π3 satisfy at least 1/2 the constraints of ψC , then π1, π2 are 0.99-close to WH(u1),
WH(u2) respectively for some u1,u2 such that u1 ◦ u2 is a satisfying assignment for circuit
C.

Now we are ready to prove Lemma 18.30.

Proof of Lemma 18.30: Suppose the given arity 2 formula ϕ has n variables u1, u2, . . . , un,
alphabet {0..W−1} and N constraints C1, C2, . . . , CN . Think of each variable as taking values that
are bit strings in {0, 1}k, where k = d logW e. Then if constraint C` involves variables say ui, uj

we may think of it as a circuit applied to the bit strings representing ui, uj where the constraint
is said to be satisfied iff this circuit outputs 1. Say m is an upperbound on the size of this circuit
over all constraints. Note that m is at most 22k < W 4. We will assume without loss of generality
that all circuits have the same size.

If we apply the transformation of Corollary 18.35 to this circuit we obtain an instance of q0CSP,
say ψCl

. The strings ui, uj get replaced by strings of variables Ui, Uj of size 22k
< 2W 2

that take
values over a binary alphabet. We also get a new set of variables that play the role analogous to
π3 in the statement of Corollary 18.35. We call these new variables Πl.

Our reduction consists of applying the above transformation to each constraint, and taking
the union of the q0CSP instances thus obtained. However, it is important that these new q0CSP
instances share variables, in the following way: for each old variable ui, there is a string of new
variables Ui of size 22k

and for each constraint Cl that contains ui, the new q0CSP instance ψCl

uses this string Ui. (Note though that the Πl variables are used only in ψCl
and never reused.)

This completes the description of the new q0CSP instance ψ (see Figure 18.7). Let us see that it
works.

Original instance:

constraints:

variables:
(over alphabet [W])

u1 u2 u3 un

C1 C2 Cm

Transformed instance:

constraints:

variables:
(over alphabet {0.1}) U1=WH(u1)

......

U2=WH(u2) Un=WH(un) Π1 Πm

...
cluster 1 cluster 2 cluster m

.......

Figure 18.7: The alphabet reduction transformation maps a 2CSP instance ϕ over alphabet {0..W−1} into a
qCSP instance ψ over the binary alphabet. Each variable of ϕ is mapped to a block of binary variables that in the
correct assignment will contain the Walsh-Hadamard encoding of this variable. Each constraint C` of ϕ depending
on variables ui, uj is mapped to a cluster of constraints corresponding to all the PCP of proximity constraints for
C`. These constraint depend on the encoding of ui and uj , and on additional auxiliary variables that in the correct
assignment contain the PCP of proximity proof that these are indeed encoding of values that make the constraint
C` true.

Web draft 2007-01-08 22:03

DRAFT

18.6. THE ORIGINAL PROOF OF THE PCP THEOREM. p18.29 (373)

Suppose the original instance ϕ was satisfiable by an assignment u1, . . . ,un. Then we can
produce a satisfying assignment for ψ by using part 2 of Corollary 18.35, so that for each constraint
Cl involving ui, uj , the encodings WH(ui),WH(ui) act as π1, π2 and then we extend these via a
suitable string π3 into a satisfying assignment for ψCl

.
On the other hand if val(ϕ) < 1 − ε then we show that val(ψ) < 1 − ε/2. Consider any

assignment U1,U2, . . . ,Un,Π1, . . . ,ΠN to the variables of ψ. We “decode” it to an assignment
for ϕ as follows. For each i = 1, 2, . . . , n, if the assignment to Ui is 0.99-close to a linear function,
let ui be the string encoded by this linear function, and otherwise let ui be some arbitrary string.
Since val(ϕ) < 1− ε, this new assignment fails to satisfy at least ε fraction of constraints in ϕ. For
each constraint Cl of ϕ that is not satisfied by this assignment, we show that at least 1/2 of the
constraints in ψCl

are not satisfied by the original assignment, which leads to the conclusion that
val(ψ) < 1− ε/2. Indeed, suppose Cl involves ui, uj . Then ui ◦ uj is not a satisfying assignment to
circuit Cl, so part 3 of Corollary 18.35 implies that regardless of the value of variables in Πl, the
assignment Ui ◦ uj ◦Πl must have failed to satisfy at least 1/2 the constraints of ψCl

. �

18.6 The original proof of the PCP Theorem.

The original proof of the PCP Theorem, which resisted simplification for over a decade, used
algebraic encodings and ideas that are complicated versions of our proof of Theorem 18.21. (Indeed,
Theorem 18.21 is the only part of the original proof that still survives in our writeup.) Instead of the
linear functions used in Welsh-Hadamard code, they use low degree multivariate polynomials. These
allow procedures analogous to the linearity test and local decoding, though the proofs of correctness
are a fair bit harder. The alphabet reduction is also somewhat more complicated. The crucial part
of Dinur’s simpler proof, the one given here, is the gap amplification lemma (Lemma 18.29) that
allows to iteratively improve the soundness parameter of the PCP from very close to 1 to being
bounded away from 1 by some positive constant. This general strategy is somewhat reminiscent
of the zig-zag construction of expander graphs and Reingold’s deterministic logspace algorithm for
undirect connectivity described in Chapter ??.

Chapter notes

Problems

§1 Prove that for every two functions r, q : N→ N and constant s < 1, changing the constant in
the soundness condition in Definition 18.1 from 1/2 to s will not change the class PCP(r, q).

§2 Prove that for every two functions r, q : N→ N and constant c > 1/2, changing the constant in
the completeness condition in Definition 18.1 from 1 to c will not change the class PCP(r, q).

§3 Prove that any language L that has a PCP-verifier using r coins and q adaptive queries also
has a standard (i.e., non-adaptive) verifier using r coins and 2q queries.

§4 Prove that PCP(0, log n) = P. Prove that PCP(0,poly(n)) = NP.

Web draft 2007-01-08 22:03

DRAFT

p18.30 (374) 18.6. THE ORIGINAL PROOF OF THE PCP THEOREM.

§5 Let L be the language of matrices A over GF(2) satisfying perm(A) = 1 (see Chapters ??
and 8). Prove that L is in PCP(poly(n),poly(n)).

§6 Show that if SAT ∈ PCP(r(n), 1) for r(n) = o(log n) then P = NP. (Thus the PCP Theorem
is probably optimal up to constant factors.)

§7 (A simple PCP Theorem using logspace verifiers) Using the fact that a correct tableau can
be verified in logspace, we saw the following exact characterization of NP:

NP = {L : there is a logspace machine M s.t x ∈ L iff ∃y : M accepts (x, y).} .

Note that M has two-way access to y.

Let L-PCP(r(n)) be the class of languages whose membership proofs can be probabilistically
checked by a logspace machine that uses O(r(n)) random bits but makes only one pass over
the proof. (To use the terminology from above, it has 2-way access to x but 1-way access
to y.) As in the PCP setting, “probabilistic checking of membership proofs” means that for
x ∈ L there is a proof y that the machine accepts with probability 1 and if not, the machine
rejects with probability at least 1/2. Show that NP = L-PCP(log n). Don’t assume the PCP
Theorem!

Hint:Designaverifierfor3SAT.Thetrivialideawouldbethat
theproofcontainsasatisfyingassignmentandtheverifierrandomly
picksaclauseandreadsthecorrespondingthreebitsintheproof
tocheckiftheclauseissatisfied.Thisdoesn’twork.Why?The
betterideaistorequirethe“proof”tocontainmanycopiesofthe
satisfyingassignment.Theverifiersusespairwiseindependenceto
runtheprevioustestonthesecopies—whichmayormaynotbe
thesamestring.

(This simple PCP Theorem is implicit in Lipton [?]. The suggested proof is due to van
Melkebeek.)

§8 Suppose we define J − PCP (r(n)) similarly to L − PCP (r(n)), except the verifier is only
allowed to read O(r(n)) successive bits in the membership proof. (It can decide which bits
to read.) Then show that J − PCP (log n) ⊆ L.

§9 Prove that there is an NP-language L and x 6∈ L such that f(x) is a 3SAT formula with
m constraints having an assignment satisfying more than m −m0.9 of them, where f is the
reduction from f to 3SAT obtained by the proof of the Cook-Levin theorem (Section 2.3).

Hint:showthatforanappropriatelanguageL,aslightchangein
theinputfortheCook-Levinreductionwillalsocauseonlyaslight
changeintheoutput,eventhoughthischangemightcauseaYES
instanceofthelanguagetobecomeaNOinstance.

Web draft 2007-01-08 22:03

DRAFT

18.6. THE ORIGINAL PROOF OF THE PCP THEOREM. p18.31 (375)

§10 Show a poly(n, 1/ε)-time 1 + ε-approximation algorithm for the knapsack problem. That is,
show an algorithm that given n + 1 numbers a1, . . . , an ∈ N (each represented by at most n
bits) and k ∈ [n], finds a set S ⊆ [n] with |S| ≤ k such that

∑
i∈S ai ≥ opt

1+ε where

opt = max
S⊆[n],|S|≤k

∑
i∈S

ai

Hint:firstshowthattheproblemcanbesolvedexactlyusingdy-
namicprogrammingintimepoly(n,m)ifallthenumbersinvolved
areintheset[m].Then,showonecanobtainanapproximation
algorithmbykeepingonlytheO(log(1/e)+logn)mostsignificant
bitsofeverynumber.

§11 Show a polynomial-time algorithm that given a satisfiable 2CSP-instance ϕ (over binary
alphabet) finds a satisfying assignment for ϕ.

§12 Prove that QUADEQ is NP-complete.

Hint:showyoucanexpresssatisfiabilityforSATformulasusing
quadraticequations.

§13 Prove that if Z,U are two n× n matrices over GF(2) such that Z 6= U then

Pr
r,r′∈R{0,1}n

[rZr′ 6= rUr′] ≥ 1
4

Hint:usinglinearityreducethistothecasethatUistheallzero
matrix,andthenprovethisusingtwoapplicationsoftherandom
subsumprinciple.

§14 Show a deterministic poly(n, 2q)-time algorithm that given a qCSP-instance ϕ (over binary
alphabet) with m clauses outputs an assignment satisfying m/2q of these assignment.

Hint:onewaytosolvethisistouseq-wiseindependentfunctions
??.

§15 Let St be the binomial distribution over t balanced coins. That is, Pr[St = k] =
(

t
k

)
2−t. Prove

that for every δ < 1, the statistical distance of St and St+δ
√

t is at most 10ε.

Hint:approximatethebinomialcoefficientusingStirling’sfor-
mulaforapproximatingfactorials.

§16 The long-code for a set {0, . . . ,W − 1} is the function LC : {0, . . . ,W − 1} → {0, 1}2
W

such
that for every i ∈ {0..W−1} and a function f : {0..W−1} → {0, 1}, (where we identify f with
an index in [2w]) the f th position of LC(i), denoted by LC(i)f , is f(i). We say that a function
L : {0, 1}2

W

→ {0, 1} is a long-code codeword if L = LC(i) for some i ∈ {0..W−1}.

Web draft 2007-01-08 22:03

DRAFT

p18.32 (376) 18.6. THE ORIGINAL PROOF OF THE PCP THEOREM.

(a) Prove that LC is an error-correcting code with distance half. That is, for every i 6= j ∈
{0..W−1}, the fractional Hamming distance of LC(i) and LC(j) is half.

(b) Prove that LC is locally-decodable. That is, show an algorithm that given random access
to a function L : 2{0,1}W

→ {0, 1} that is (1−ε)-close to LC(i) and f : {0..W−1} → {0, 1}
outputs LC(i)f with probability at least 0.9 while making at most 2 queries to L.

(c) Let L = LC(i) for some i ∈ {0..W−1}. Prove the for every f : {0..W−1} → {0, 1},
L(f) = 1−L(f), where f is the negation of f (i.e. , f(i) = 1−f(i) for every i ∈ {0..W−1}).

(d) Let T be an algorithm that given random access to a function L : 2{0,1}W

→ {0, 1}, does
the following:

i. Choose f to be a random function from {0..W−1} → {0, 1}.
ii. If L(f) = 1 then output True.

iii. Otherwise, choose g : {0..W−1} → {0, 1} as follows: for every i ∈ {0..W−1}, if
f(i) = 0 then set g(i) = 0 and otherwise set g(i) to be a random value in {0, 1}.

iv. If L(g) = 0 then output True; otherwise output False.

Prove that if L is a long-code codeword (i.e., L = LC(i) for some i) then T outputs
True with probability one.

Prove that if L is a linear function that is non-zero and not a longcode codeword then
T outputs True with probability at most 0.9.

(e) Prove that LC is locally testable. That is, show an algorithm that given random access
to a function L : {0, 1}W → {0, 1} outputs True with probability one if L is a long-
code codeword and outputs False with probability at least 1/2 if L is not 0.9-close to a
long-code codeword, while making at most a constant number of queries to L.

Hint:usethetestTabovecombinedwithlinearitytesting,self
correction,andasimpletesttoruleouttheconstantzerofunction.

(f) Using the test above, give an alternative proof for the Alphabet Reduction Lemma
(Lemma 18.30).

Hint:Totransforma2CSPWformulaϕovernvariablesinto
aqCSPψoverbinaryalphabet,use2

W
variablesu

1
j,...,u

2
W

jfor
eachvariableujofϕ.Inthecorrectproofthesevariableswill
containthelongcodeencodingofuj.Then,addasetof2

W2
vari-

ablesy
1
i,...,y

2
W2

iforeachconstraintϕiofϕ.Inthecorrectproof
thesevariableswillcontainthelongcodeencodingoftheassign-
mentfortheconstraintϕi.Foreveryconstraintofϕ,ψwillcontain
constraintsfortestingthelongcodeofboththexandyvariables
involvedintheconstraint,testingconsistencybetweenthexvari-
ablesandtheyvariables,andtestingthattheyvariablesactually
encodeasatisfyingassignment.

Web draft 2007-01-08 22:03

DRAFT

18.6. THE ORIGINAL PROOF OF THE PCP THEOREM. p18.33 (377)

Omitted proofs

The preprocessing step transforms a qCSP-instance ϕ into a “nice” 2CSP-instance ψ through the
following three claims:

Claim 18.36
There is a CL- reduction mapping any qCSP instance ϕ into a 2CSP2q instance ψ such that

val(ϕ) ≤ 1− ε⇒ val(ψ) ≤ 1− ε/q

Proof: Given a qCSP-instance ϕ over n variables u1, . . . , un with m constraints, we construct the
following 2CSP2q formula ψ over the variables u1, . . . , un, y1, . . . , ym. Intuitively, the yi variables
will hold the restriction of the assignment to the q variables used by the ith constraint, and we will
add constraints to check consistency: that is to make sure that if the ith constraint depends on the
variable uj then uj is indeed given a value consistent with yi. Specifically, for every ϕi of ϕ that
depends on the variables u1, . . . , uq, we add q constraints {ψi,j}j∈[q] where ψi,j(yi, uj) is true iff yi

encodes an assignment to u1, . . . , uq satisfying ϕi and uj is in {0, 1} and agrees with the assignment
yi. Note that the number of constraints in ψ is qm.

Clearly, if ϕ is satisfiable then so is ψ. Suppose that val(ϕ) ≤ 1− ε and let u1, . . . , uk, y1, . . . , ym

be any assignment to the variables of ψ. There exists a set S ⊆ [m] of size at least εm such that
the constraint ϕi is violated by the assignment u1, . . . , uk. For any i ∈ S there must be at least one
j ∈ [q] such that the constraint ψi,j is violated. �

Claim 18.37
There is an absolute constant d and a CL- reduction mapping any 2CSPW instance ϕ into a 2CSPW

instance ψ such that

val(ϕ) ≤ 1− ε⇒ val(ψ) ≤ 1− ε/(100Wd).

and the constraint graph of ψ is d-regular. That is, every variable in ψ appears in exactly d
constraints.

Proof: Let ϕ be a 2CSPW instance, and let {Gn}n∈N be an explicit family of d-regular expanders.
Our goal is to ensure that each variable appears in ϕ at most d + 1 times (if a variable appears
less than that, we can always add artificial constraints that touch only this variable). Suppose
that ui is a variable that appears in k constraints for some n > 1. We will change ui into k
variables y1

i , . . . , y
k
i , and use a different variable of the form yj

i in the place of ui in each constraint
ui originally appeared in. We will also add a constraint requiring that yj

i is equal to yj′

i for every
edge (j, j′) in the graph Gk. We do this process for every variable in the original instance, until
each variable appears in at most d equality constraints and one original constraint. We call the
resulting 2CSP-instance ψ. Note that if ϕ has m constraints then ψ will have at most m + dm
constraints.

Clearly, if ϕ is satisfiable then so is ψ. Suppose that val(ϕ) ≤ 1− ε and let y be any assignment
to the variables of ψ. We need to show that y violates at least εm

100W of the constraints of ψ. Recall
that for each variable ui that appears k times in ϕ, the assignment y has k variables y1

i , . . . , y
k
i .

We compute an assignment u to ϕ’s variables as follows: ui is assigned the plurality value of

Web draft 2007-01-08 22:03

DRAFT

p18.34 (378) 18.6. THE ORIGINAL PROOF OF THE PCP THEOREM.

y1
i , . . . , y

k
i . We define ti to be the number of yj

i ’s that disagree with this plurality value. Note that
0 ≤ ti ≤ k(1 − 1/W) (where W is the alphabet size). If

∑n
i=1 ti ≥

ε
4m then we are done. Indeed,

by (3) (see Note 18.18), in this case we will have at least
∑n

i=1
ti

10W ≥
ε

40Wm equality constraints
that are violated.

Suppose now that
∑n

i=1 ti <
ε
4m. Since val(ϕ) ≤ 1− ε, there is a set S of at least εm constraints

violated in ϕ by the plurality assignment u. All of these constraints are also present in ψ and since
we assume

∑n
i=1 ti <

ε
4m, at most half of them are given a different value by the assignment y than

the value given by u. Thus the assignment y violates at least ε
2m constraints in ψ. �

Claim 18.38
There is an absolute constant d and a CL-reduction mapping any 2CSPW instance ϕ with d′-regular
constraint graph for d ≥ d′ into a 2CSPW instance ψ such that

val(ϕ) ≤ 1− ε⇒ val(ψ) ≤ 1− ε/(10d)

and the constraint graph of ψ is a 4d-regular expander, with half the edges coming out of each
vertex being self-loops.

Proof: There is a constant d and an explicit family {Gn}n∈N of graphs such that for every n, Gn

is a d-regular n-vertex 0.1-expander graph (See Note 18.18).
Let ϕ be a 2CSP-instance as in the claim’s statement. By adding self loops, we can assume that

the constraint graph has degree d (this can at worst decrease the gap by factor of d). We now add
“null” constraints (constraints that always accept) for every edge in the graph Gn. In addition, we
add 2d null constraints forming self-loops for each vertex. We denote by ψ the resulting instance.
Adding these null constraints reduces the fraction of violated constraints by a factor at most four.
Moreover, because any regular graph H satisfies λ(H) ≤ 1 and because of λ’s subadditivity (see
Exercise 11, Chapter ??), λ(ψ) ≤ 3

4 + 1
4λ(Gn) ≤ 0.9 where by λ(ψ) we denote the parameter λ of

ψ’s constraint graph. �

Web draft 2007-01-08 22:03

	PCP and Hardness of Approximation
	PCP and Locally Testable Proofs
	PCP and Hardness of Approximation
	Gap-producing reductions
	Gap problems
	Constraint Satisfaction Problems
	An Alternative Formulation of the PCP Theorem
	Hardness of Approximation for 3SAT and INDSET.

	n--approximation of independent set is NP-hard.
	NPPCP (poly(n),1): PCP based upon Walsh-Hadamard code
	Tool: Linearity Testing and the Walsh-Hadamard Code
	Proof of Theorem 18.21
	PCP's of proximity

	Proof of the PCP Theorem.
	Gap Amplification: Proof of Lemma 18.29
	Alphabet Reduction: Proof of Lemma 18.30

	The original proof of the PCP Theorem.
	Exercises

